
GEOCENTRIC EQUATORIAL EPHEMERIS OF A COMET, REFERRED TO
THE MEAN EQUATOR AND EQUINOX OF J2000.0

A Mathcad PLUS 6 Document Prepared September 1997 by Roger L. Mansfield
E-mail: astroger@att.net Webpage: http://astroger.com

This document demonstrates the programming power of Mathcad PLUS 6 by developing a live 
procedure which calculates a geocentric equatorial ephemeris for a comet using Comet Hale-
Bopp as an example. [An ephemeris is a table of times and sky coordinates, e.g., right ascension 
(R.A.) and declination (Dec.) coordinates of a celestial body, at those times.] 

By changing the orbital elements and other input data in Step 12, below, you can generate a 
geocentric equatorial ephemeris for any comet, for any time period of interest. When you have 
generated an ephemeris for the comet, you can input the sky coordinates to Martin V. 
Zombeck's Mathcad electronic book, Astronomical Formulas (see Chapter 3, Astronomical 
Phenomena), along with your latitude and longitude, to calculate rise and set times for the 
comet. Or, you can simply identify on a planisphere ("star wheel") the constellation in which the 
comet lies, and use the planisphere to determine approximate local times of rise and set.

1. Define a vector function, C, to calculate the first four c-functions.
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2. Define uniform, two-body path propagator function, U2PM.

≔k 0.01720209895 ≔μ 1.0

≔K ⋅k ‾‾μ

≔U2PM (( ,,,,,,K q e i Ω ω Δt))
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←Df +q ⋅⋅⋅K2 e s2 c
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if

else

≥Df 0
‖
‖ ←m 1

‖
‖ ←m -1

←Δs ―――――――――――
⋅-5 f

⎛
⎝ +Df ⋅m ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾|| -(( ⋅4 Df))2 ⋅⋅20 f DDf||
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←s +s Δs

←P
0

-⋅cos ((Ω)) cos ((ω)) ⋅⋅sin ((Ω)) cos ((i)) sin ((ω))

←P
1

+⋅sin ((Ω)) cos ((ω)) ⋅⋅cos ((Ω)) cos ((i)) sin ((ω))

←P
2

⋅sin ((i)) sin ((ω))

←Q
0

-(( +⋅cos ((Ω)) sin ((ω)) ⋅⋅sin ((Ω)) cos ((i)) cos ((ω))))

←Q
1

-(( -⋅sin ((Ω)) sin ((ω)) ⋅⋅cos ((Ω)) cos ((i)) cos ((ω))))

←Q
2

⋅sin ((i)) cos ((ω))

←rcosv -q ⋅⋅K2 s2 c
2

←rsinv ⋅⋅⋅K ‾‾p s c
1

+⋅rcosv P ⋅rsinv Q

winupm Mathcad Prime 10.mcdx Page 2



3. Test the functions U2PM and C with data from orbit of Comet Hale-Bopp, near perihelion of 
1997 March 31.95962 TT ( 1997 day 90.95962), using 1997 January 1.0 TT as date of interest 
(1997 day 1.0). 

≔q 0.9143839 ≔e 0.9952982 ≔DegPerRad ――
180

π

≔i ――――
089.43088

DegPerRad
≔Ω ――――

282.47058

DegPerRad
≔ω ――――

130.56797

DegPerRad

≔T 90.95962 ≔Δt -1.0 T

≔rC U2PM (( ,,,,,,K q e i Ω ω Δt)) =rC

0.2881055936
-1.2478104851
1.1937843701

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

4. Calculate the heliocentric ecliptic coordinates of the Earth-Moon barycenter, referred to the 
mean ecliptic and equinox of J2000 (Julian Date 2451545.0 TT), using data from the Explanatory 
Supplement to the Astronomical Almanac (P. Kenneth Seidelmann, Editor, University Science 
Books, 1992), p. 316.

≔JD 2450449.5 ≔JDo 2451545.0

≔ΔT ―――
-JD JDo

36525.0
≔a -1.00000011 ⋅0.00000005 ΔT

≔e -0.01671022 ⋅0.00003804 ΔT

≔q ⋅a (( -1 e))

≔μ 1.00000304 ≔K ⋅k ‾‾μ ≔n ⋅K a
――
-3

2

≔SecPerDeg 3600.0

≔SecPerRev ⋅SecPerDeg 360.0
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≔i ―――――――

-0.00005 ――――
⋅46.94 ΔT

SecPerDeg

DegPerRad
≔Ω 0.0

≔ω ――――――――

+102.94719 ――――
⋅1198.28 ΔT

SecPerDeg

DegPerRad
≔L ――――――――――――――

+100.46435 ⋅―――――――――
+1293740.63 ⋅99 SecPerRev

SecPerDeg
ΔT

DegPerRad

≔T +JD ――――――
-mod (( ,-L ω ⋅2 π))

n
=T 2450451.73986008

≔Δt -JD T =Δt -2.2398600751

≔rEM U2PM (( ,,,,,,K q e i Ω ω Δt)) =rEM

-0.1817945886
0.966350205
0.0000074392

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

5. Correct the heliocentric position of the Earth-Moon barycenter to the geocenter.

≔LM ――――――――――
mod (( ,+218.0 ⋅481268.0 ΔT 360.0))

DegPerRad

≔rEM

-rEM0
⋅0.0000312 cos ⎛⎝LM⎞⎠

-rEM1
⋅0.0000312 sin ⎛⎝LM⎞⎠

rEM2

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

6. Calculate the geocentric ecliptic coordinates of the comet, then transform from geocentric 
ecliptic to geocentric equatorial coordinates.

≔r -rC rEM ≔ε ――――
23.4392911

DegPerRad
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≔M
1 0 0
0 cos ((ε)) -sin ((ε))
0 sin ((ε)) cos ((ε))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔r ⋅M r

≔α ⋅angle ⎛
⎝

,r
0
r
1
⎞
⎠

――――
DegPerRad

15
=α 18.7078822326

≔δ ⋅asin
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r
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r
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⎞
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⎝
r
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⎝
r
2
⎞
⎠
2

⎞
⎟
⎟
⎟⎠

DegPerRad =δ 4.8088857748

The foregoing live equations demonstrate the effectiveness of the functions U2PM and C,
both for propagating a highly eccentric orbit, the heliocentric orbit of Comet Hale-Bopp, and 
for propagating a low-eccentricity orbit, the heliocentric orbit of the Earth-Moon barycenter.
Function U2PM will also, without modification, propagate a parabolic or a hyperbolic 
trajectory, and that is the key to its power as a "universal variables" method.

It should be further noted that the foregoing calculations constitute a complete "geocentric 
equatorial ephemeris point" calculation for a single position of Comet Hale-Bopp on the 
celestial sphere.

Since the goal of this worksheet is to produce a concise and economical specification of how to 
generate a geocentric equatorial ephemeris for a comet, taking full advantage of the 
programming power of Mathcad, we will now define two more functions in terms of the 
equations just developed. 

7. Define a function, HGEO, to calculate the heliocentric ecliptic position of the geocenter as 
a function of the Julian date, with epoch at 2000 January 1.5 TT (JD = 2451545.0). Note that k 
(as defined in Step 2) and DegPerRad (as defined in Step 3) are "global" arguments of this 
function, i.e., they are defined in the worksheet outside of the function, and prior to its 
definition. So also are SecPerDeg and SecPerRev (as defined in Step 4).
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←JDo 2451545.0

←Tc ―――
-JD JDo

36525.0
←a -1.00000011 ⋅0.00000005 Tc
←e -0.01671022 ⋅0.00003804 Tc
←q ⋅a (( -1 e))
←μ 1.00000304

←K ⋅k ‾‾μ

←n ⋅K a
――
-3

2

←ω ――――――――

+102.94719 ――――
⋅1198.28 Tc

SecPerDeg

DegPerRad

←i ―――――――

-0.00005 ――――
⋅46.94 Tc

SecPerDeg

DegPerRad
←Ω 0.0

←L ―――――――――――――

+100.46435 ⋅―――――――――
+1293740.63 ⋅99 SecPerRev

SecPerDeg
Tc

DegPerRad

←T -JD ――――――
mod (( ,-L ω ⋅2 π))

n
←Δt -JD T
←rEM U2PM (( ,,,,,,K q e i Ω ω Δt))

←LM ――――――――――
mod ⎛⎝ ,+218.0 ⋅481268.0 Tc 360.0⎞⎠

DegPerRad
-rEM0

⋅0.0000312 cos ⎛⎝LM⎞⎠

-rEM1
⋅0.0000312 sin ⎛⎝LM⎞⎠

rEM2

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦
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≔HGEO ((JD)) ‖
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←JDo 2451545.0

←Tc ―――
-JD JDo

36525.0
←a -1.00000011 ⋅0.00000005 Tc
←e -0.01671022 ⋅0.00003804 Tc
←q ⋅a (( -1 e))
←μ 1.00000304

←K ⋅k ‾‾μ

←n ⋅K a
――
-3

2

←ω ――――――――

+102.94719 ――――
⋅1198.28 Tc

SecPerDeg

DegPerRad

←i ―――――――

-0.00005 ――――
⋅46.94 Tc

SecPerDeg

DegPerRad
←Ω 0.0

←L ―――――――――――――

+100.46435 ⋅―――――――――
+1293740.63 ⋅99 SecPerRev

SecPerDeg
Tc

DegPerRad

←T -JD ――――――
mod (( ,-L ω ⋅2 π))

n
←Δt -JD T
←rEM U2PM (( ,,,,,,K q e i Ω ω Δt))

←LM ――――――――――
mod ⎛⎝ ,+218.0 ⋅481268.0 Tc 360.0⎞⎠

DegPerRad
-rEM0

⋅0.0000312 cos ⎛⎝LM⎞⎠

-rEM1
⋅0.0000312 sin ⎛⎝LM⎞⎠

rEM2

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦
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8. Define function ECEQ to convert from geocentric ecliptic coordinates to geocentric 
equatorial coordinates at the J2000 epoch.

≔ECEQ ((r))
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
||

←ε ――――
23.4392911

DegPerRad

←M
1 0 0
0 cos ((ε)) -sin ((ε))
0 sin ((ε)) cos ((ε))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

⋅M r

9. Now we can specify a comet ephemeris generation function, ECOM.

≔ECOM (( ,,,,,,,,q e i Ω ω T JD Δd N)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

j ‥0 N
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←Δt -JD T
←K k
←r U2PM (( ,,,,,,K q e i Ω ω Δt))
←r -r HGEO ((JD))
←r ECEQ ((r))

←α ⋅angle ⎛
⎝

,r
0
r
1
⎞
⎠

――――
DegPerRad

15

←δ ⋅asin

⎛
⎜
⎜
⎜⎝

―――――――
r
2

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾++⎛
⎝
r
0
⎞
⎠
2 ⎛

⎝
r
1
⎞
⎠
2 ⎛

⎝
r
2
⎞
⎠
2

⎞
⎟
⎟
⎟⎠

DegPerRad

|
|
|
|
|
|

if

else

＝j 0
‖
‖ ←Table JD α δ[[ ]]

‖
‖ ←Table stack (( ,Table JD α δ[[ ]]))

←JD +JD Δd

Table

10. Use function ECOM to generate an ephemeris for Comet Hale-Bopp, starting at 1997 
March 17 TT (JD = 2450524.5), with 12 additional ephemeris points spaced 5 days apart.

≔q 0.9143839 1. Perihelion distance, A.U.

≔e 0.9952982 2. Orbital eccentricity.

≔i ――――
089.43088

DegPerRad
3. Orbital inclination, degrees.

≔Ω ――――
282.47058

DegPerRad
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≔i ――――
089.43088

DegPerRad

≔Ω ――――
282.47058

DegPerRad
4. Celestial longitude of ascending node,

degrees.

≔ω ――――
130.56797

DegPerRad
5. Argument of perihelion, degrees.

≔JDo 2450448.5 6. Julian date for 1997 Jan 0.0 TT.

≔T +JDo 90.95962 7. Julian date of perihelion passage.

≔JD +JDo 76.0 8. Julian date of ephemeris start.

≔Δd 5.0 9. Ephemeris step size, in days.

≔N 12 10. Number of time steps to take.

JD Rt. Ascension Declination

=ECOM (( ,,,,,,,,q e i Ω ω T JD Δd N))

2450524.5 23.3536802299 43.9960020502
2450529.5 0.1668493701 45.5536315945
2450534.5 1.0068310373 45.7095811622
2450539.5 1.8071609033 44.4886930692
2450544.5 2.5184364833 42.1799437843
2450549.5 3.1223120948 39.1800289708
2450554.5 3.6243291357 35.8457740569
2450559.5 4.0406541822 32.4315064943
2450564.5 4.3891007163 29.0913758099
2450569.5 4.6852439709 25.9052985263
2450574.5 4.9414241319 22.9051982871
2450579.5 5.1669635525 20.094750595

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

This ephemeris can be used with Martin Zombeck's Mathcad electronic book, Astronomical
Formulas [11], or with a planisphere, to generate rise and set times on a date of interest.

However, we are not done, as there is an important issue yet to deal with: how good are the 
predictions, assuming that the orbital elements are good?

To determine how good the predictions are, we can compare them with output obtained from 
Montenbruck and Pfleger's COMET program [5]. But before we can do that, we will need to 
format the output right ascensions into hours, minutes, seconds, and tenths of seconds of time, 
and format the output declinations into degrees, minutes, and seconds or arc.

To do this, we will want to define a function to format the ephemeris. We let
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≔M ECOM (( ,,,,,,,,q e i Ω ω T JD Δd N))

and then operate on the matrix M with a formatting function, as defined in the next step.

11. Define a function, FORM, that formats the right ascensions and declinations produced by 
the comet ephemeris generation function, ECOM. Note that M is the input ephemeris matrix 
and N is the number of ephemeris points (rows) of M.

≔FORM (( ,M N)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

j ‥0 N
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←hr +M
,j 1

――
0.5

36000
←h floor ⎛⎝hr⎞⎠
←m ⋅60 ⎛⎝ -hr h⎞⎠

←s ――――――――
floor (( ⋅600 (( -m floor ((m))))))

10
←m floor ((m))

←H
,j 0

h

←P
,j 0

m

←S
,j 0

s

←A augment (( ,H P))
←A augment (( ,A S))

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

j ‥0 N
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←dr +|
|
M

,j 2
|
|

――
0.5

3600
←d floor ⎛⎝dr⎞⎠
←m ⋅60 ⎛⎝ -dr d⎞⎠
←s floor (( ⋅60 (( -m floor ((m))))))
←m floor ((m))

←H
,j 0

d

|
|
|
||

if <M
,j 2

0

‖
‖‖

←H
,j 0

-d

←P
,j 0

m

←S
,j 0

s

←A augment (( ,A H))
←A augment (( ,A P))
←A augment (( ,A S))
←A augment ⎛⎝ ,M

⟨⟨0⟩⟩ A⎞⎠
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Application of the function FORM to the Nx7 matrix M gives the following results:

Julian R.A. Dec.
Date hr mm ss.s dg mm ss

=FORM (( ,M N))

2450524.5 23 21 13.2 43 59 46
2450529.5 0 10 0.7 45 33 13
2450534.5 1 0 24.6 45 42 34
2450539.5 1 48 25.8 44 29 19
2450544.5 2 31 6.4 42 10 48
2450549.5 3 7 20.3 39 10 48
2450554.5 3 37 27.6 35 50 45
2450559.5 4 2 26.4 32 25 53
2450564.5 4 23 20.8 29 5 29
2450569.5 4 41 6.9 25 54 19
2450574.5 4 56 29.1 22 54 19
2450579.5 5 10 1.1 20 5 41
2450584.5 5 22 7.6 17 27 46

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

Montenbruck and Pfleger's COMET program gives these results for the same input data:

Julian R.A. Dec.
Date hr mm ss.s dg mm ss

≔MPF

2450524.5 23 21 11.4 43 59 42
2450529.5 0 09 58.5 45 33 14
2450534.5 1 0 22.4 45 42 41
2450539.5 1 48 23.6 44 29 31
2450544.5 2 31 4.4 42 11 4
2450549.5 3 7 18.7 39 11 7
2450554.5 3 37 26.2 35 51 6
2450559.5 4 2 25.2 32 26 17
2450564.5 4 23 19.8 29 5 53
2450569.5 4 41 6.1 25 54 43
2450574.5 4 56 28.4 22 54 43
2450579.5 5 10 0.5 20 6 5
2450584.5 5 22 7.1 17 28 9

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Comparison of our formatted output with that from Montenbruck & Pfleger's program shows 
larger differences than we would like (up to 2.2 seconds of time in R.A. and up to 24 seconds of 
arc in Dec.). There are two sources of differences:

a. Montenbruck & Pfleger's COMET program corrects the heliocentric motion of the comet for 
light-time, i.e., for the motion of the comet in the time it takes light from the comet to reach 
Earth.

b. Montenbruck & Pfleger account for planetary perturbations of the Earth-Moon system in 
their model for the orbital motion of the geocenter around the sun (see SUN200, pp. 23-26).

The second source of differences we can do nothing about, for we have adopted the mean 
elements model in the Explanatory Supplement to the Astronomical Almanac .

To eliminate the first source of differences, we will correct for light-time as per Montenbruck & 
Pfleger, pp. 76-77. To do this, we will need to define U2PV, an improved version of U2PM, 
which will calculate velocity as well as position.

First we find it convenient to define a preliminary function, PQEQ, which performs the necessary 
Euler angle transformations. This will keep U2PV from becoming too long to fit into a single 
printed page of Mathcad output.

≔PQEQ (( ,,,,i Ω ω p q)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|

←P
0

-⋅cos ((Ω)) cos ((ω)) ⋅⋅sin ((Ω)) cos ((i)) sin ((ω))

←P
1

+⋅sin ((Ω)) cos ((ω)) ⋅⋅cos ((Ω)) cos ((i)) sin ((ω))

←P
2

⋅sin ((i)) sin ((ω))

←Q
0

-(( +⋅cos ((Ω)) sin ((ω)) ⋅⋅sin ((Ω)) cos ((i)) cos ((ω))))

←Q
1

-(( -⋅sin ((Ω)) sin ((ω)) ⋅⋅cos ((Ω)) cos ((i)) cos ((ω))))

←Q
2

⋅sin ((i)) cos ((ω))

+⋅p P ⋅q Q

Then we define a function that performs the light-time correction, for incorporation into a new 
comet ephemeris generation function, FCOM. 

≔LTIM ((PV))
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
||

←r PV
⟨⟨0⟩⟩

←v PV
⟨⟨1⟩⟩

←Δ ‾‾‾⋅r r
-r ⋅⋅0.00578 Δ v
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We now define U2PV as follows.

≔U2PV (( ,,,,,,K q e i Ω ω Δt))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←α ⋅K2 ―――
(( -1 e))

q
←p ⋅q (( +1 e))

←s ―
Δt

q
←Δs s

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥||Δs|| 0.00000001
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←c C ⎛⎝ ⋅α s2 ⎞⎠
←f -+⋅q s ⋅⋅⋅K2 e s3 c

3
Δt

←Df +q ⋅⋅⋅K2 e s2 c
2

←DDf ⋅⋅⋅K2 e s c
1

|
|
|
|
|
|

if

else

≥Df 0
‖
‖ ←m 1

‖
‖ ←m -1

←Δs ―――――――――――
⋅-5 f

⎛
⎝ +Df ⋅m ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾|| -(( ⋅4 Df))2 ⋅⋅20 f DDf||

⎞
⎠

←s +s Δs

←rcosv -q ⋅⋅K2 s2 c
2

←rsinv ⋅⋅⋅K ‾‾p s c
1

←r PQEQ (( ,,,,i Ω ω rcosv rsinv))

←a ⋅――
-K

‾‾p
――
rsinv

Df

←b ⋅――
K

‾‾p

⎛
⎜
⎝

+e ――
rcosv

Df

⎞
⎟
⎠

←v PQEQ (( ,,,,i Ω ω a b))
augment (( ,r v))
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Note that the output of function U2PV is a 3x2 matrix containing position and velocity.
Function FCOM will assign the output of U2PV to the 3x2 matrix PV, and will then apply function 
LTIM to PV, in order to effect the light-time correction, as follows.

≔FCOM (( ,,,,,,,,q e i Ω ω T JD Δd N)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

j ‥0 N
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←Δt -JD T
←K k
←PV U2PV (( ,,,,,,K q e i Ω ω Δt))
←PV

⟨⟨0⟩⟩ -PV
⟨⟨0⟩⟩ HGEO ((JD))

←r LTIM ((PV))
←r ECEQ ((r))

←α ⋅angle ⎛
⎝

,r
0
r
1
⎞
⎠

――――
DegPerRad

15

←δ ⋅asin

⎛
⎜
⎜
⎜⎝

―――――――
r
2

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾++⎛
⎝
r
0
⎞
⎠
2 ⎛

⎝
r
1
⎞
⎠
2 ⎛

⎝
r
2
⎞
⎠
2

⎞
⎟
⎟
⎟⎠

DegPerRad

|
|
|
|
|
|

if

else

＝j 0
‖
‖ ←Table JD α δ[[ ]]

‖
‖ ←Table stack (( ,Table JD α δ[[ ]]))

←JD +JD Δd

Table

12. Generate formatted ephemeris table for Comet Hale-Bopp. 

(To generate predictions for your own comet or asteroid, for your own time period of interest,
simply change the following ten numbered input quantities to what you wish. You can obtain 
current orbital elements for comets and asteroids from the Minor Planet Center [1].) 

≔q 0.9143839 Input 1. Perihelion distance, A.U.

≔e 0.9952982 Input 2. Orbital eccentricity.

Input 3. Orbital inclination, degrees.
≔i ――――

089.43088

DegPerRad

Input 4. Celestial longitude of ascending
node, degrees.≔Ω ――――

282.47058

DegPerRad

≔ω ――――
130.56797

DegPerRad
Input 5. Argument of perihelion, degrees.
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≔ω ――――
130.56797

DegPerRad

≔JDo 2450448.5 Input 6. Julian date for 1997 Jan 0.0 TT.

≔T +JDo 90.95962 Input 7. Julian date of perihelion passage.

≔JD +JDo 76 Input 8. Julian date of ephemeris start, 
1997 March 17.0 TT.

≔Δd 5.0 Input 9. Ephemeris step size, days.

≔N 12 Input 10. Number of time steps to take.

≔M FCOM (( ,,,,,,,,q e i Ω ω T JD Δd N))

Julian R.A. Dec.
Date hr mm ss.s dg mm ss

Ephemeris 
Matrix Month 
& Day, 1997:

Mar 17
22
27

Apr 1
6
11
16
21
26

May 1
6

11
16

=FORM (( ,M N))

2450524.5 23 21 10.7 43 59 41
2450529.5 0 9 57.9 45 33 14
2450534.5 1 0 21.8 45 42 41
2450539.5 1 48 23.2 44 29 32
2450544.5 2 31 4.1 42 11 5
2450549.5 3 7 18.5 39 11 8
2450554.5 3 37 26.1 35 51 7
2450559.5 4 2 25.2 32 26 17
2450564.5 4 23 19.8 29 5 53
2450569.5 4 41 6.1 25 54 44
2450574.5 4 56 28.5 22 54 43
2450579.5 5 10 0.6 20 6 5

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

When we compare the output with that from the Montenbruck & Pfleger MPF ephemeris matrix 
(refer again to Step 11), we now see differences in right ascension no larger than about 0.7 
seconds of time, and differences in declination no larger than about 1 second of arc, for 
approximately a factor of three improvement in R.A. agreement, and a factor of nine 
improvement in DEC agreement. Better agreement is not possible without including 
perturbations of the Earth-moon system by the other planets of the solar system, as is done in 
Montenbruck & Pfleger's COMET program.
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NOTES AND COMMENTS

1. The first four c-functions are calculated by series and recursion, by the algorithm of Danby [2, 
Section 6.9]. Stiefel and Scheifele [9, p. 43] have named these functions the Stumpff functions 
in honor of Karl J. Stumpff. Stumpff's key reference to these functions, in which he shows that
they form the basis for a representation of two-body motion which is the same (uniform) for all 
path eccentricities (i.e., the same for circular, elliptical, parabolic, and hyperbolic two-body 
paths), is Reference 10, below. [Stumpff also published, in German, a trilogy of celestial 
mechanics, Himmelsmechanik (volumes in 1959, 1965, and 1974).]

2. The word "uniform" is used in the sense of Note 1. Here k is the Gaussian gravity constant
for the sun, as the primary in a two-body system consisting of the sun and the comet. Function 
U2PM is also used with the sun as the primary and the Earth-moon barycenter as the 
secondary, in Steps 4 and 7). The inputs to U2PM are

K function of k and m (see Mathcad "UPM Notation" document)

q perihelion distance, in A.U.

e orbital eccentricity (e = 0 for circle, 0<e<1 for ellipse, e=1 for parabola,
and e>1 for hyperbola)

i orbital inclination, in radians

W celestial longitude of ascending node, in radians

w argument of perihelion, in radians

Dt time of flight from perihelion to time of interest

The U2PM function closely follows the treatment by Mansfield [3], except that the while loop 
iterates on the fictitious time, s, by a second-order root-finding method called the algorithm of
Laguerre-Conway by Danby [2, p. 160]; see also Prussing and Conway [7, p. 38].

3. The data for the orbit of comet Hale-Bopp are as calculated by Brian G. Marsden, director 
of the Minor Planet Center, Smithsonian Astrophysical Observatory [4]. Later, more accurate 
orbital elements are available, but I chose these to make a point: excellent orbital elements for 
Hale-Bopp were available more than eighteen months before perihelion.

4. This step demonstrates how uniform two-body mechanics, in the form of U2PM, can be 
applied to perturbed orbits, such as the orbit of the Earth-moon barycenter around the sun.
First, the orbital elements are updated for secular perturbations, as per the algorithm given by 
Seidelmann [8], then U2PM is used with the updated elements to calculate position. Note 
that m is not taken as unity, since the mass of the Earth-moon barycenter, in solar masses, is 
measurable. Also, the position coordinates are referred to the mean equator and equinox of 
the epoch J2000.0, which is 2000 January 1.5 TT. [A note on notations for time: it is 
customary now to use the notation UT for universal time when the exact kind (UT1, UT2, or 
UTC) is not important to the discussion. Similarly, TT is used to denote terrestrial time (TDT,
TDB, TDC). TT replaces ET (ephemeris time) in current usage.] 
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5. The algorithm for correcting the position of the Earth-moon barycenter to the geocenter is
given in the Astronomical Almanac [6], and requires calculating the mean orbital longitude of
the moon as a function of the Julian centuries elapsed since J2000.0 (see again Note 4).

6. Given the heliocentric ecliptic position of the geocenter and the heliocentric ecliptic 
position of the comet, we simply subtract the first vector from the second to get the 
geocentric ecliptic position of the comet. We then use the obliquity of the ecliptic, e , as the 
argument of the rotation matrix M, which transforms geocentric ecliptic position to 
geocentric equatorial position. Finally, we calculate the spherical polar angular coordinates a
and d from the cartesian positional coordinates.

7. The function HGEO converts Steps 4 and 5, which calculate a single heliocentric ecliptic 
position of the geocenter, into a procedure which can be embedded into an ephemeris 
generation function.

8. Function ECEQ converts the matrix definition and matrix multiplication in Step 6 into a
procedure which can be used to transform from geocentric ecliptic to geocentric equatorial.

9. ECOM is our first ephemeris generation function. It produces a table with rows consisting of 
Julian date, right ascension, and declination. There are as many rows as ephemeris points 
requested. T is the time of perihelion passage, JD is the Julian date for the first ephemeris point,
Dd is the time step, in days, and N is the number of ephemeris points requested.

10. Here ECOM is used to generate an ephemeris for comet Hale-Bopp. The output gives right 
ascension in hours and fractional hours, and gives declination in degrees and fractional degrees.
For comparison with ephemerides produced from other programs, it is desirable to express right 
ascensions in hours, minutes, seconds, and tenths of seconds of time, and declinations in 
degrees, minutes, and seconds of arc. We do this by defining and applying the function FORM in 
the next step, below, but first we place the output of ECOM into the ephemeris matrix M. 

11. Here we define a function, FORM, that formats the right ascensions and declinations of the 
ephemeris. It is a straightforward application of the Mathcad floor and augment functions. But it 
should be noted that FORM rounds right ascension to the nearest tenth of a second of time, and 
rounds declination to the nearest second of arc. In this step we also discover that an ECOM-
generated ephemeris of a comet lacks the light-time correction, and correcting for light-time requires 
that we know the velocity of the comet as well as its position. Following definition of the functions 
PQEQ and LTIM, we are able to define the uniform, two-body mechanics path propagation function 
U2PV, which calculates velocity as well as position, and the ephemeris generating function FCOM, 
which generates a comet ephemeris in which the positions are corrected for light-time.

12. In this step we use FCOM to generate a comet ephemeris in which positions are corrected for 
the time it takes light to travel from the comet to Earth. The inputs are clearly labeled and 
numbered to facilitate adapting Step 12 to the generation of an ephemeris for any comet of 
interest, for any time period of interest. It should be noted, however, that the ephemeris is a
"two-body ephemeris". In practical terms, this means that the epoch of the orbital elements 
should be near the time period of interest. Perturbed comet ephemerides can be generated by 
techniques given in Montenbruck & Pfleger [5, Chapter 5].
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UNIFORM PATH MECHANICS (UPM) NOTATIONAL SUMMARY

N a counter variable that starts at zero

x argument of Stumpff's c-functions

c a vector with Stumpff's first four c-functions as components

k Gaussian constant for primary in system of two gravitating bodies, or 
"two-body system"

μ 1 + m, where m is the mass of the secondary body in the two-body 
system, in units of the primary body's mass

K ⋅k ‾‾μ
[a notation adopted by Stiefel and Scheifele in Linear and 
Regular Celestial Mechanics (1971)]

q periapsis distance of two-body trajectory, e.g., perihelion distance in 
astronomical units (A.U.) or perigee distance in Earth radii (E.R.)

e orbital eccentricity, a measure of the shape of a two-body trajectory

i orbital inclination, i.e., the angle that a comet's orbital plane makes with 
the ecliptic plane, or the angle that an Earth satellite's orbital plane 
makes with Earth's equatorial plane

Ω reference angle of ascending node, e.g., celestial longitude of the 
ascending node of a comet's orbit, and right ascension of the 
ascending node of an Earth satellite's orbit

ω argument of periapsis, i.e., argument of perihelion of a comet's orbit, or 
argument of perigee of an Earth satellite's orbit

Δt time of flight from periapsis (perihelion or perigee) to the epoch of the 
orbital elements

α twice the negative of the total energy in a two-body system (as used in 
U2PM and U2PV); also, the right ascension coordinate (R.A.) of a body 
on the celestial sphere

p q (1+e), the semi-latus rectum of a conic path (circle, ellipse, parabola, 
or hyperbola)
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q (1+e), the semi-latus rectum of a conic path (circle, ellipse, parabola, 
or hyperbola)

s "fictitious time" variable (independent variable) of uniform path 
mechanics (UPM)

f as used in U2PM and U2PV, the function f(s) associated with the uniform 
Kepler equation (note that the derivative of f with respect to s is the radius 
vector, in accordance with the Sundmann transformation, dt/ds = r)

m as used in U2PM and U2PV, a sign variable associated with 
the Laguerre-Conway second-order root-finding method

Δs change in, or correction to s (see s, above)

P a unit vector that points from the primary body's (sun's or Earth's) center to 
the point of periapsis (perihelion or perigee) of the secondary body's orbit

Q WxP, where W is the unit orbital angular momentum vector obtained by 
crossing r with v, and then unitizing the resulting vector (P, Q, and W are the 
basis vectors for a dextral, orthonormal orbital reference frame called the 
perifocal orbit reference frame ; this is an inertial reference frame under the 
assumptions of two-body motion)

T time of periapsis passage, one of the six "conic" orbital elements

rC heliocentric ecliptic position vector of comet

JD Julian date

JDo Julian date at some reference epoch, here J2000.0, or 2000 January 
1.5 Terrestrial Time (TT)

ΔT Time elapsed in Julian centuries of 36525.0 days

n mean orbital motion of secondary (here, the Earth-moon barycenter)

L heliocentric mean orbital longitude of Earth-moon barycenter

rEM heliocentric ecliptic position of Earth-moon barycenter

LM geocentric mean orbital longitude of moon

r geocentric position vector of comet, with components in A.U.
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r geocentric position vector of comet, with components in A.U.

ε obliquity of the ecliptic (i.e., the angle that the sun's ecliptic path on the 
celestial sphere makes with the celestial equator)

M a matrix that converts geocentric ecliptic positions to geocentric equatorial 
positions; also used as a working matrix for storing comet ephemerides

δ comet's declination (Dec.) coordinate on celestial sphere

Δd time step for comet ephemeris calculations

v geocentric velocity vector of comet, with components in A.U./day

Δ geocentric distance to comet, usually expressed in A.U.

PV 3x2 matrix whose columns are r (position) and v (velocity)

MPF matrix of cometary ephemeris points obtained by running 
Montenbruck & Pfleger's COMET program (see Reference 5)

DegPerRad number of degrees in one radian

SecPerDeg number of seconds in one degree

SecPerRev number of seconds in one orbital revolution of 360 degrees
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UPM FUNCTION SUMMARY

C calculates first four of Stumpff's c-functions

U2PM calculates comet's, planet's, or Earth satellite's orbital position by 
uniform, two-body path mechanics

HGEO calculates heliocentric ecliptic position of Earth's center, referred to 
the mean eclicptic and equinox of J2000.0

ECEQ converts geocentric ecliptic coordinates to geocentric equatorial 
coordinates at the J2000.0 epoch

ECOM calculates a comet's ephemeris, a table of positions on the celestial 
sphere at equally-spaced Julian dates (times) of Terrestrial Time (TT), 
but does not correct positions for light-time 

FORM formats the output of the ephemeris-generating functions ECOM 
and FCOM

PQEQ transforms a comet's or Earth satellite's perifocal coordinates 
(position and velocity, in turn) to heliocentric ecliptic (comet's) or 
geocentric equatorial (Earth satellite's) coordinates

LTIM corrects comet's geocentric position vector for light-time, using 
comet's velocity vector

U2PV calculates comet's, planet's, or Earth satellite's orbital position and 
velocity by uniform, two-body path mechanics

FCOM calculates comet's ephemeris at equally-spaced Julian dates of TT, 
and corrects the positions for the time it takes light to travel from 
the comet to Earth (light-time correction)
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