HERGET'S METHOD ITERATION WORKSHEET

Roger L. Mansfield, June 21, 1998  http://astroger.com

(Updated to PTC's Mathcad Prime 10.0 on 2024 July 20)

This worksheet implements Herget's method of preliminary orbit determination for comets
and minor planets. See Herget [1] for the original journal article, Danby [2] for a more
detailed exposition of the original algorithm, Mansfield [3] for the extended Gauss and
uniform path propagation improvements incorporated herein into Herget's method, Gray [4]
for a Windows application FIND_ORB that includes Herget's method, and Burtz [5] for details
of the collection and original analysis of astrometric observations of the asteroid 1035 Amata,
which were selected for use in this worksheet, as specified in the Herget's Method Initiation
worksheet, HM1.

The author is particularly indebted to Air Force Second Lieutenant Dan C. Burtz for sharing
his astrometric data, as taken using the equipment of the U.S. Air Force Academy
Observatory during January-March 1998, and to Bill J. Gray, for calling to the author's
attention the power of Herget's method for performing preliminary orbit determination (by
making FIND_ORB available for downloading from the Project Pluto website, as mentioned
by Stuart Goldman in the "Software Showcase,"Sky & Telescope, June 1998).

First we define constants and set the Mathcad worksheet ORIGIN to 1 so that subscripts start
at unity rather than at zero.

DegPerRad := 180 ORIGIN=1

T

SecPerDeg :=3600.0 SecPerRad := DegPerRad + SecPerDeg

1. Retrieve values of n, p; and p,, JDT, L, A, D, and R as previously specified by calculating the
Herget's Method Initiation and Test Case Specification worksheet, HM1.

V:=READPRN (“RHOVALS.prn”)

n:= V1 Number of observations.

pyi= V2 Estimate of geocentric distance at first observation.
Ppi= V3 Estimate of geocentric distance at n-th observation.
p;=2.67671542 p,=3.43659007

n=>5

HMC Mathcad Prime 10.mcdx Page 1 of 13



2450834.74164
2450840.7159
JDT:=READPRN (“TFILE.prn”) JDT=|2450841.77069
2450857.56861
2450885.59222

L:=READPRN (“LFILE.prn”)

0.41192221 0.41261493 0.41242816 0.39884919 0.33120336
L=]0.61555733 0.62202611 0.6233099 0.64678145 0.69889469
0.67186998 0.66545656 0.66437021 0.65007159 0.63391684

A:=READPRN (“AFILE.prn”)

—0.83108276 —0.83332748 —0.83396689 —0.8511705 —0.9036638
A=| 0.55614876 0.55277963 0.55181448 0.52488931  0.42824261
0 0 0 0 0

D :=READPRN (“DFILE.prn”)

—0.37365966 —0.36785083 —0.3666091 —0.34121563 —0.2714702
D=|-0.55837956 —0.55454324 —0.55406276 —0.55332176 —0.5728477
0.74066911  0.74643658  0.74740366  0.75987296  0.77340122

R:=READPRN (“RFILE.pm”)

0.5070362 0.59386619  0.60855178  0.80048881  0.98495772
R=|-0.77385376 —0.72072768 —0.71049291 —0.5302041 —0.12172387
—0.33552418 —0.31249068 —0.308055  —0.2298888 —0.05278695

2. Calculate ry and r,, using the current estimates of p; and p,.

A0z o L RO Pz o [0 R

Use Extended Gauss method (Ref. 3) to calculate v4. To do this, we will need function C to
calculate the first four c-functions and the velocity-calculating function VELO, as needed by
function TWOPOE. TWOPOE implements the extended Gauss method.
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TWOPOE(K,At,rI,r2>:: rmag;<—\/r; 1,

rmag, <— ryer,

ryer
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rmag,srmag;
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A —
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m <—
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y+<0
ynew o 1
while |y —,,,| > 0.00000001
y <_ynew

xe )
2
y
if x>0

z<+—4.asin <\/;>
Arg —2°
else

z<+—4-.asin (\/?x)

Arg — —2*

C C(Arg)

de C(Arg)
4

8ec

4

d 3
(%)
oo = 14X (343)

v VELO (K, At,rmag; 71,72, Yye s Arg)
augment <r, ,V -K)

X«

k:=0.01720209895 1i=1.0
K=k At:=JDT —JDT
PV:=TWOPOE (K , At /", /%)

Compute and display the conic elements by calling function PVCO to transform r; and v to
conic elements.

First transform r; and v, from the HCI equatorial J2000.0 reference frame to the HCl ecliptic
J2000.0 reference frame.
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We will need the obliquity of the ecliptic, ¢, at J2000.0, in order to transform the EC| ecliptic
J2000.0 coordinates to ECI equatorial J2000.0 coordinates.

1 0 0
g::w M:={0 cos(e) —sin(e)
DegPerRad 0 sin(e) cos(e)
ECEQ(r)=M-r (Transforms from ecliptic to equatorial.)
EQEC(r)=M"+r (Transforms from equatorial to ecliptic.)
[0.59556231
r;:=EQEC (P r;=|3.07053443
| 0.99461396
[ —0.0086049
v, = EQEC (P1?) v;=| 0.00324807
0.00116843

W= ppA)
PVCO invokes function SCAL, which we define now.

(Note that in SCAL, as defined in this document, the subscripts of c range from 1 to 4 rather

than from 0 to 3.)
2 . L o tan 2
K V 1+e 2

As s

while |4s]| > 0.00000001

c<—C<a-s2>

T q-(l+e
1+e-cos(v)

f—q+K -e-s’

SCAL(K,a,q,e,v):: S —

ec —r
3

Df—K* rersec

DDf+— K> rerc
if Df>0

m«—1
else

p
—5.f
(0f+m-V](4-D7* —20-1-DDA)

s<—Ss+4s

As «—
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Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors
range from 1 through 3 rather than from 0 through 2. Also, the subscripts of ¢ range from 1
through 4 rather than from 0 through 3.)

PVCO(K,r,v) i=||rmag«—\re-r

h—rxv

hmag —\ h-h
h

rmag
Ve—WxU

vhangle(hm?g veV—10, hmag Ve

U

K K’
P« cos(v)+U—sin(v)+V
Q«sin(v)-U+cos(v)+V
i «—acos W3)

Q «— angle (— W2 , Wl)

o «+ angle (Q3 ,P3)

s<—SCAL(K,a,q,e,1))
c<—C<oc-s2
At—qes+K* e-s’ e

q
e

i+ DegPerRad

Q-+ DegPerRad

 + DegPerRad
At
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We now invoke PVCO and place its output into array CONIC.
CONIC:=PVCO (K,r;,v))

2.5002149 |
0.20273768
18.08743686
2.20984863
323.03350335

| 518.26174756 |

CONIC=

We should note that the position vector input to PVCO must have units of A.U. and the
velocity vector must have units of A.U. per day. We summarize the Herget's method
preliminary orbital solution as follows.

CONICl =2.5002149 Perihelion distance in A.U.
CONIC2:0.20273768 Path eccentricity.
CONIC3: 18.08743686 Path inclination, in degrees.
CONIC4:2.20984863 Celestial longitude of ascending node,
in degrees.
CONIC5:323.03350335 Argument of perihelion, in degrees.
CONIC6:518.26174756 Time of flight from perihelion to epoch, in days.
CONIC1
ar=— a=3.13600033 AU.
1— CONIC2
=1
n,:=K-a’ «DegPerRad n,=0.177476119 deg/day
M:==n_. CONIC( M=91.97908382 degrees

3. Use f and g functions of Stumpff's c-functions (Ref. 3) to calculate positions r, though r, ;.

To do this, we first define function UKEP to solve the uniform Kepler equation. This function
will be invoked by function UPM, defined next.
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UKEP (t,rmag, ,0,,a) =

T
§

rmag,

As s
while |s| >0.00000001

c<—C<a-s2>
2 3
F—rmag,+s+c +0,+s" +c +s «c —1
2 3 4

2
DF «—rmag,+c +0,°s+c +5" +C
1 2 3

DDF«—ao-cl—f-<1—rmago-a>-s-c2

if DF>0
Hm<—1

else
Hm<——1

As +— =i

(pF+m-\](4-DF)* —20-F-DDF|)
s <«—8+A4s

N

Function UPM implements uniform path mechanics. Given time At since epoch, it calculates
position and velocity using f and g functions of Stumpff's c-functions. (Note that here, and in
function UKEP, above, the subscripts of c range from 1 to 4 rather than from 0 to 3, since the

Mathcad ORIGIN = 1.)

UPM (K ,r,,v,,41) =

Yo% "0
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We still need a driver function for UPM. That function is performed by UPMF, defined as follows.

UPMF (K ,r,,v,,JDT ,n):=|{fori € 2..n—1
At JDT —JDT,

PV—UPM(K,r,,v,,4t)
Mi—l)(_PVO)
M

We invoke UPMF now to obtain POS, a 3-by-(n-2) matrix of position vectors r,, ..., Fy_1.

POS:=UPMF (K, W JDT, n)

4. Calculate the residual functions P; through P,_; and Q; through Q.

RES(POS,R,A,n):=|foriel..n—2
P (POSY 4 R+ V) . g0+ 1)

P

P:=RES(POS,R,A,n) Q:=RES(POS,R,D ,n)

Display the P and Q residuals in A.U.

0.00000122  0.00000374
augment (P, Q) =| 0.00000222 —0.00000499
—0.00000147  0.00000023

Compute the RMS for this iteration in arc-seconds. To do this, we compute the geocentric
distances, p; and divide the residuals P; and Q; by p;fori = 1, ..., n-2, in order to convert from
A.U. to radians. Finally, we multiply by the number of arc-seconds in one radian.
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p:=|foriel..n—2
Hp‘(_\/<POS<i)+R<iH)> 1 <POS'<i)+R<i+ 1)>

i

iy (Pi.PiJ’_Qi.Qi)

2

ity

RMS := « SecPerRad RMS=0.209
2.n—4

0 0
4240.04615587 0

6974.44972535 0

2751.9023691 0

APPENDPRN (“RMS.pm”, [RMS 0])=|1319.59863123 0
41.27370122 0

0.22285787 0

0.20908032 0

0.2090803 0

0
m 4240.046
RMS := READPRN (“RMS.prn”) 657445
2751.902
RMS History: RMS=]1319.599
41.274
0.223
0.209
0.209 |

Number of iterations:

Iterations :=rows (RMS) — 1

Iterations =8
5. Compute numerically the partial derivatives dP1;, dQ1;, dPn;, dQn; for i=1, ..., n-2.
0:=0.001 (Set variation parameter for numerical partials.)

First compute numerically the partials with respect to p;.

p]p::p]+5

Az, L0 R Pz o [0 R
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@

W= TWOPOE (K,JDT —JDT AV, r<">>
POSp:=UPMF (K, W JDT, n)
Pp:=RES(POSp,R,A,n) Qp:=RES(POSp,R,D ,n)
apl=tP=" do1:=2=9
o
Now compute numerically the partials with respect to py.
Pupi=Pn+0
RO AU (U A P 100 _ )

@

W= TWOPOE (K,JDT —JDT , AV, r<">>

POSp:=UPMF (K, W JDT, n)

Pp:=RES(POSp,R,A,n) Qp:=RES(POSp,R,D ,n)

dpl’l ::M dQn ::%

6. Compute the corrections to p; and p, by a least squares fit. There are 2n-4 equations
(n-2 equations in P and n-2 equations in Q) in two unknowns, Ap; and Ap,, as follows:

P+ dP1Ap; +dPnAp, =0 (n-2 equations)

Q +dQ1 Ap; +dQn Ap, =0 (n-2 equations)

We use Mathcad's Minerr function (see Mathcad PLUS 6 Manual, p. 355) to find the solution:

n—2

SSR (4p;,4p,) = >3 ((Pl_ +dP1 ~dp, + dPni-Ap,,)z + (Ql_ +dQ1 +4p; + dQni-Apn)z)

i=1
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Ap] =P Apn =Pn

SSR (dp; ,4p,) =0.01016244

g- =1 < This is the result after the

3 T Mathcad Prime 10.0 worksheet
converter converts Minerr

g_ SSR (Ap] ,Apn> =0 function setup in Mathcad 15

. worksheet HMC.xmcd.

I Ap, In Mathcad Prime 10.0, see
e minerr (4p; , 4p,) Functions > Solving > minerr.

Solver

dp;
4p,

8.81318839.107°

] [2.79540536 ] 10—9}

pri=p;+4p,
Pni=pPntAp,

n 5
WRITEPRN [“RHOVALS.prn”, | p; || =] 2.67671542
Py 3.43659008

7. Repeat steps 1-6 by clicking on the Mathcad "Calculate Worksheet" command (from the
Math menu), as many times as necessary to get Herget's method to converge. Usually
convergence will be noted as having occurred when the last two RMS values in the RMS matrix
of Step 4 are the same, to three significant figures, and are smaller than any other RMS value
above them in the RMS matrix.

If the RMS does not trend downward after five or so iterations, click on the open HM1
(Herget's Method Initiation) worksheet, define new starting values of p; and p,, and then click
on the "Calculate Worksheet" command while the HM1 worksheet window is still active,
before returning to this HMC (Herget's Method Iteration) worksheet window.
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