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(Updated to PTC's Mathcad Prime 10.0 on 2024 July 21)

In this worksheet we propagate numerically the Near-Earth Asteroid Rendezvous (NEAR) 
spacecraft's solved-for Earth escape trajectory [1, p. 5]. We integrate from epoch to the time of 
the first observation, printing out the initial and final steps and eight steps in between.

Define the Gaussian constant for Earth as primary and then the related constant, K, using the 
value of ke adopted by U.S. Space Command for use with its general perturbation theories.

≔ke 0.074366916133 Gaussian constant for Earth as primary body.

Secondary's mass, negligible relative to
primary's mass.≔m 0

≔K ⋅ke ‾‾‾‾+1 m

=K 0.074366916133 E.R.3/2 per minute.

≔ae 6378.135 We will also need Earth's equatorial radius to 
convert from km to Earth radii and vice versa.

Define and propagate numerically the state space equation Xdot = S(X) X. Start with position 
and velocity at epoch and step to position and velocity at the time of the first observation.
Note that Xo has units of E.R. for position and E.R./min for velocity.
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≔Xo stack ⎛⎝ ,ro vo⎞⎠ Note that Xo is a 6-by-1 column vector obtained 
by "stacking" position on top of velocity.
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≔S ((X))
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Integrate from to = 0 (epoch) to t (time of first observation). To facilitate comparison with the 
BASIC program, use fixed-step Runge-Kutta integration with step size of 4.2052583 minutes.

≔to 0.0 Times to and t are in minutes.

≔t -+59 ―――
32.510
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=t 42.052583

≔NRK 10 Tell Mathcad's rkfixed function to output
10 Runge-Kutta integration points.

≔D ⎛⎝ ,t Xo⎞⎠ ⋅S ⎛⎝Xo⎞⎠ Xo Tell Mathcad's rkfixed function what 
the derivative function is.

≔Z rkfixed ⎛⎝ ,,,,Xo to t NRK D⎞⎠ Invoke rkfixed to integrate Xo from time to

to time t and output NRK ephemeris points.

=Z

0.000000 -0.994378 0.578813 -0.499243 -0.073845 -0.060680 -0.044259
4.205258 -1.281944 0.313080 -0.673636 -0.063349 -0.064938 -0.038861
8.410517 -1.530867 0.037055 -0.827781 -0.055441 -0.065993 -0.034645

12.615775 -1.751167 -0.240075 -0.966478 -0.049628 -0.065668 -0.031469
16.821033 -1.950329 -0.514513 -1.093523 -0.045297 -0.064803 -0.029060
21.026292 -2.133569 -0.784862 -1.211649 -0.041993 -0.063761 -0.027196
25.231550 -2.304518 -1.050754 -1.322798 -0.039410 -0.062699 -0.025721
29.436808 -2.465748 -1.312255 -1.428372 -0.037344 -0.061679 -0.024530
33.642067 -2.619129 -1.569602 -1.529401 -0.035658 -0.060726 -0.023549
37.847325 -2.766052 -1.823096 -1.626659 -0.034259 -0.059846 -0.022730
42.052583 -2.907573 -2.073042 -1.720743 -0.033080 -0.059038 -0.022034
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And so we obtain the following values of position in km and velocity in km/sec at time t:
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COMMENTS

1. Note that we can integrate a perturbed trajectory as Xdot = S(X) X + P(X) if we know P(X), a
six-vector whose first three components are null and whose last three components are the 
perturbative accelerations in the ECI x, y, and z directions. 

Further, we can find the state transition matrix at each observation time by integrating
Fdot = A(X) F, where A is a matrix of partial derivatives found by differentiating the 
perturbative acceleration terms.

2. For further information about these concepts and how they can be applied to the orbit 
determination process, check out the website for Prof. George H. Born's CU-Boulder Aerospace 
Engineering course ASEN 5070, Introduction to Statistical Orbit Determination, at

http://www-ccar.colorado.edu/~goldstdb/ASEN5070.htm.
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