TWO-BODY ORBIT PROPAGATION VIA STATE SPACE ANALYSIS Roger L. Mansfield, December 18, 1998 http://astroger.com

(Updated to PTC's Mathcad Prime 10.0 on 2024 July 21)

In this worksheet we propagate numerically the Near-Earth Asteroid Rendezvous (NEAR) spacecraft's solved-for Earth escape trajectory [1, p. 5]. We integrate from epoch to the time of the first observation, printing out the initial and final steps and eight steps in between.

Define the Gaussian constant for Earth as primary and then the related constant, K, using the value of k_e adopted by U.S. Space Command for use with its general perturbation theories.

$k_e := 0.074366916133$	Gaussian constant for Earth as primary body.
<i>m</i> := 0	Secondary's mass, negligible relative to primary's mass.
$K := k_e \cdot \sqrt{1+m}$	
K = 0.074366916133	E.R. ^{3/2} per minute.
$a_e := 6378.135$	We will also need Earth's equatorial radius to convert from km to Earth radii and vice versa.

Define and propagate numerically the state space equation $X_{dot} = S(X) X$. Start with position and velocity at epoch and step to position and velocity at the time of the first observation. Note that X_0 has units of E.R. for position and E.R./min for velocity.

$[-6342\ 275645]$	$\begin{bmatrix} -7 849870004 \end{bmatrix}$
0512:275015	7.019070001 60
$r_{\circ} := 3691.745453 \cdot \frac{1}{2}$	$v_{*} := -6.450404087 \cdot \frac{60}{10000000000000000000000000000000000$
-3184.242135 ^{<i>u</i>} _{<i>e</i>}	-4.704817677 ^{<i>ue</i>}

 $X_o := stack\left(r_o, v_o\right)$

Note that X_o is a 6-by-1 column vector obtained by "stacking" position on top of velocity.

$$S(X) \coloneqq \left[\begin{array}{c} s \leftarrow -K^2 \cdot \left(\left(X_0 \right)^2 + \left(X_1 \right)^2 + \left(X_2 \right)^2 \right)^{-\frac{3}{2}} \\ \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ s & 0 & 0 & 0 & 0 & 0 \\ 0 & s & 0 & 0 & 0 & 0 \\ 0 & 0 & s & 0 & 0 & 0 \end{bmatrix} \right]$$

orbpro Mathcad Prime 10.mcdx

$t_o := 0.0$	Times t _o	Times t_o and t are in minutes.		
$t \coloneqq 59 + \frac{32.510}{60} - \left(17 + \frac{29.355}{60}\right)$) t = 42.05	t=42.052583		
NRK := 10	Tell Mat 10 Rung	Tell Mathcad's rkfixed function to output 10 Runge-Kutta integration points.		
$D(t, X_o) \coloneqq S(X_o) \cdot X_o$	Tell Mat the deriv	Tell Mathcad's rkfixed function what the derivative function is.		
$Z \coloneqq rkfixed\left(X_o, t_o, t, NRK, D\right)$	Invoke r to time	kfixed to integra t and output NRI	te X _o from time t _o K ephemeris points.	
$Z = \begin{bmatrix} 0.000000 & -0.994378 & 0.5 \\ 4.205258 & -1.281944 & 0.3 \\ 8.410517 & -1.530867 & 0.6 \\ 12.615775 & -1.751167 & -0.2 \\ 16.821033 & -1.950329 & -0.5 \\ 21.026292 & -2.133569 & -0.7 \\ 25.231550 & -2.304518 & -1.6 \\ 29.436808 & -2.465748 & -1.3 \\ 33.642067 & -2.619129 & -1.5 \\ 20.0200000000000000000000000000000000$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} -0.073845 & -0.06 \\ -0.063349 & -0.06 \\ -0.055441 & -0.06 \\ -0.049628 & -0.06 \\ -0.045297 & -0.06 \\ -0.041993 & -0.06 \\ -0.039410 & -0.06 \\ -0.037344 & -0.06 \\ -0.035658 & -0.06 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
42.052583 - 2.907573 - 2.00032 - 1	173042 -1.720743 es of position in km	-0.034239 -0.03 -0.033080 -0.05	59038 -0.022730 59038 -0.022034	
$\begin{bmatrix} Z_{_{NRK,1}} \\ Z_{_{NRK,2}} \\ Z_{_{NRK,3}} \end{bmatrix} \cdot a_e = \begin{bmatrix} -18544.895 \\ -13222.14 \\ -10975.129 \end{bmatrix}$	(km) $\begin{bmatrix} Z_{NRK,4} \\ Z_{NRK,5} \\ Z_{NRK,6} \end{bmatrix}$	$\cdot \frac{a_e}{60} = \begin{bmatrix} -3.51650 \\ -6.2758 \\ -2.34223 \end{bmatrix}$	086] 761 (km/sec 877]	

COMMENTS

1. Note that we can integrate a perturbed trajectory as $X_{dot} = S(X) X + P(X)$ if we know P(X), a six-vector whose first three components are null and whose last three components are the perturbative accelerations in the ECI x, y, and z directions.

Further, we can find the state transition matrix at each observation time by integrating $\Phi_{dot} = A(X) \Phi$, where A is a matrix of partial derivatives found by differentiating the perturbative acceleration terms.

2. For further information about these concepts and how they can be applied to the orbit determination process, check out the website for Prof. George H. Born's CU-Boulder Aerospace Engineering course ASEN 5070, Introduction to Statistical Orbit Determination, at

http://www-ccar.colorado.edu/~goldstdb/ASEN5070.htm.

