HERGET'S METHOD ITERATION WORKSHEET

Roger L. Mansfield, October 3, 1999
http://astroger.com

(Updated to PTC's Mathcad Prime 10.0 on 2024 July 30)

This worksheet implements Herget's method of preliminary orbit determination for comets
and minor planets, with modifications as necessary to apply the method to artificial Earth
satellite orbit determination. See Herget [1] for the original journal article, Danby [2] for a
more detailed exposition of the original algorithm, Mansfield [3] for the extended Gauss and
uniform path propagation improvements incorporated herein into Herget's method, and Gray
[4] for details of the Cassini flyby test case as implemented in worksheet GH1.

This worksheet is set up to use angles-only (optical) observations only.

Note that the Herget's method initiation worksheet GH1 must be opened and calculated (click
on "Calculate Worksheet" from the Mathcad Math menu) before this Herget's method
iteration worksheet is opened and calculated. See Step 7, below, for further comments
regarding iteration of this worksheet.

First we define constants and set the Mathcad worksheet ORIGIN to 1 so that subscripts start
at unity rather than at zero.

DegPerRad := 180 ORIGIN =1
T
SecPerDeg :=3600.0 SecPerRad := DegPerRad + SecPerDeg

1. Retrieve values of n, p; and p,, t, L, A, D, and R as previously specified by calculating
the Herget's Method Initiation and Test Case Specification worksheet, GH1.

V:=READPRN (“RHOVALS.prn”)

ni= Vl Number of observations.
p=V Estimate of topocentric distance at first
: observation.
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Estimate of topocentric distance at n-th
observation.

pni=V.

p;=381.60966342 pn=353.57432256

n=11

JDT:=READPRN (“TFILE.prm”)

L:=READPRN (“LFILE.prn”)

[0.98660872 —0.13694934 —0.08858959 |
0.98658842 —0.13709425 —0.08859152
0.9865322 —0.13750037 —0.08858814
0.98640839 —0.13840097 —0.08856448
0.98636292 —0.13873326 —0.08855095
LT =10.98632192 —0.13903399 —0.08853598
0.98709883 —0.13410357 —0.08747643
0.98709004 —0.13417329 —0.0874687
0.9870739 —0.1343005 —0.08745566
0.9870467 —0.13451686 —0.08743007
| 0.98703926 —0.13457653 —0.08742234 |

A:=READPRN (“AFILE.prn”)

[0.13748993
0.13763543
0.13804311
0.13894697
0.1392804

=(0.13958213

0.13461962
0.13468952
0.13481706
0.13503395
1 0.13509376
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0.99050317
0.99048296
0.99042622
0.99029982
0.99025298
0.9902105

0.99089735
0.99088785
0.99087051
0.99084097
0.99083282
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D :=READPRN (“DFILE.prn”)

[0.08774827
0.08774839
0.08774001
0.08770538
0.08768785

=(0.08766926

0.08668016
0.08667167
0.08665724
0.08662929

| 0.08662092

—0.01218018
—0.01219333
—0.01222898
—0.01230577
—0.01233341
—0.01235804
—0.01177604
—0.01178112
—0.01179052
—0.01180603
—0.01181021

R:=READPRN (“RFILE.pm”)

0.99606821 |
0.99606804
0.99606834
0.99607045
0.99607165
0.99607298
0.99616659
0.99616727
0.99616841
0.99617066
0.99617134 |

[—0.47869103  0.70847103 0.51709 |
—0.50529837  0.68974623 0.51709
—0.57126489  0.63618608 0.51709
—0.68725003  0.50868821 0.51709
—0.72178086  0.45837614 0.51709
RT =|—-0.74980543  0.41093567 0.51709
—0.80434218 —0.29001717 0.51709
—0.79065068 —0.32549625 0.51709
—0.76283557 —0.38621004 0.51709
—0.69341114 —0.50025723 0.51709
| —0.66709087 —0.53485145 0.51709 |

2. Calculate ry and r,, using the current estimates of p; and p,.

A0z o L RO Pz o [0 R

Use Extended Gauss method (Ref. 3) to calculate v4. To do this, we will need function C to
calculate the first four c-functions and the velocity-calculating function VELO, as needed by
function TWOPOE. TWOPOE implements the extended Gauss method.
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TWOPOE(K,At,rI,r2>:: rmag;«—\/r;r;

rmag, <— ryer,
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Compute and display the conic elements by calling function PVCO to transform r; and v to

conic elements.

r1::PV<1)

80.99549642
r;=| —11.88486097
| —7.74685633

0.14837261
v;=|—0.01942194
| —0.01307913

PVCO invokes function SCAL, which we define now.

(Note that in SCAL, as defined in this document, the subscripts of c range from 1 to 4 rather

than from 0 to 3.)

SCAL(K,a,q,e,v)::
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s<—2- L-tang
K Vl—i—e 2

As «—s
while |4s] >0.00000001
c<—C<a-s2>
T q-(l +e
1+e-cos(v)
2
S

fe—q+K -e- e.—r

Df—K* rersec
DDf—K* resc
if Df>0

m«—1
else

Hm<——1
—5.f
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Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors
range from 1 through 3 rather than from 0 through 2. Also, the subscripts of ¢ range from 1
through 4 rather than from 0 through 3.)

PVCO(K,r,v) i=||rmag«—\re-r

h—rxv

hmag —\ h-h
h

1+e

rmag

Ve—WxU

o&angle(m#-v-lf—l.o, 5
K K

P«cos(v)-U—sin(v)+V

Q «sin(v)+U+cos(v) -V

i<—acos(W3)

hmag e U

Q «— angle (— W2 , Wl)

@ «— angle (Q3 ,P})

s+ SCAL(K ,a,q,e,v)
c<—C<a-s2>
At—qes+K* ce-s’ -c,

q
e

i+ DegPerRad

Q-+ DegPerRad

@ « DegPerRad
At
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We now invoke PVCO and place its output into array CONIC.

CONIC:=PVCO (K,r;,v)) Specify Earth's mean equatorial
radius so that calculations of
distance can be converted from
E.R. to kilometers as needed:

1.18109631 |
5.78982915 a,:=6378.135
25.36261482
3.16766493
248.32697447
| 542.81100347 |

CONIC=

We should note that the position vector input to PVCO must have units of E.R,, and the
velocity vector must have units of E.R. per minute. We summarize the Herget's method
preliminary orbital solution as follows.

(CONICl — 1) «a,=1155.05672042 Perigee height in km, relative to
spherical Earth figure.

CONIC2 =5.78982915 Path eccentricity.

CONIC3:25.36261482 Path inclination, in degrees.

CONIC4:3.16766493 Right ascension of ascending node, in

degrees.

CONIC5:248.32697447 Argument of perigee, in degrees.

CONIC =542.81100347 Time of flight from perigee to epoch, in
g minutes.

(For a discussion of how these results compare with the Cassini Navigation Team's results,
see "Analysis of Results with 11 Cassini Observations" at the very end of this worksheet.)

3. Use f and g functions of Stumpff's c-functions (Ref. 3) to calculate positions r, though r, ;.

To do this, we first define function UKEP to solve the uniform Kepler equation. This function
will be invoked by function UPM, defined next.
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UKEP(r,ro,ao,a) i=|s =X

o

As —s
while |4s| > 0.00000001

c<—C<a-s2>

2 3
Fe—r,esec +0,+5" cc +5" *c —1
2 3 4
2
DF «<r,+c +0,+5+c +5" +C
1 2 3

DDF«—UO-CI—F(I—ro-oc>-s-c2

if DF>0
m<«—1

else
Hm<——1

—5.F

As —

(pF4m-\|(4-DF)* —20-F-DDF|)
s s+4s
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Function UPM implements uniform path mechanics. Given time At since epoch, it
calculates position and velocity using f and g functions of Stumpff's c-functions. (Note that
here, and in function UKEP, above, the subscripts of ¢ range from 1 to 4 rather than from 0
to 3, since the Mathcad ORIGIN = 1))

UPM(Kr v At):: v, ——

Yoo

1 K- At
rmag, «—\/r,-r,
O, Ty,

2

rmag,

s < UKEP (T,rmago,ao,a)
c— C(aos2>

s*ec

O <

fe1-

rmag,

3
R

2
rmag<—rmag0-cl+ao°s~cz+s ~c3

—SeC
. 2
fdot T
rmag « rmag,
S2 *C
3
8dot < 1—
rmag

augment ((f rg+g'vo> K- (fdot"’o"'gdot“’o»

We still need a driver function for UPM. That function is performed by UPMF, defined as
follows.

UPMF (K ,r,,v,,t,n):=|forie2..n—1
At (JDT_—JDTI) - 1440
PV—UPM(K,r,,v,,4t)
M) — P
M
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We invoke UPMF now to obtain POS, a 3-by-(n-2) matrix of position vectors r,, ..., F_1.
POS:=UPMF (K, W JDT, n)
4. Calculate the residual functions P; through P,_; and Q; through Q.

RES(POS,R,A,n):=|foriel..n—2
P (POSY 4 RI+ V) . g0+

P
P:=RES(POS,R,A,n) Q:=RES(POS,R,D ,n)

Display the P and Q residuals in kilometers.

0.20854653  0.25464657 |
1.11938479 —1.22282167
0.08881714 —3.08481388
—0.12167222 —3.3404625
augment (P, Q) -a,=|—0.8817138 —3.7278967
3.39791652 —1.67796347
—7.69884727 —4.42147931
0.12644588 —6.46440586
1.53123709 —3.74060366 |

Compute the RMS error for this iteration in kilometers.

n—2
z (P[.Pi+Qi.Qi)
RMS:= || = .a, RMS =3.245
2.n—4

0 0
261.62347948 0
APPENDPRN (“RMS.prn”, [RMS 0])=| 3.42757947 0
3.24510918 0
0 3.24510918 0
RMS := READPRN (“RMS.prn”)
0
261.623
RMS History: RMS=| 3.428
3.245

Number of iterations: 3.245
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Iterations :=rows (RMS) — 1

Iterations =4

5. Compute numerically the partial derivatives dP1;, dQ1;, dPn;, dQn; for i=1, .., n-2.

0:=0.001 (Set variation parameter for numerical partials.)

First compute numerically the partials with respect to p;.

p]p =Py + 5

Az, L0 RO )iz L0 R0
()

W= TWOPOE (K, <JDT —JDTI) . 1440, /Y, r<">)

POSp:=UPMF (K, W JDT, n)

Pp:=RES(POSp,R,A,n) Qp:=RES(POSp,R,D ,n)

ap1=1P=L do! :ziQpé‘Q

Now compute numerically the partials with respect to py.
Pupi=Pn+0
AD =p, 0 R

W= TWOPOE (K, <JDT —JDTI) . 1440, /Y, r<">)

POSp:=UPMF (K, W JDT, n)
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Pp:=RES(POSp,R,A,n) Qp:=RES(POSp,R,D ,n)

dpl’l ::ﬂ dQn ::%

6. Compute the corrections to p; and p, by a least squares fit. There are 2n-4 equations
(n-2 equations in P and n-2 equations in Q) in two unknowns, Ap; and Ap,, as follows:

P+ dP1Ap; +dPnAp, =0 (n-2 equations)
Q +dQ1 Ap; +dQn Ap, =0 (n-2 equations)
We use Mathcad's Minerr function (see Mathcad PLUS 6 Manual, p. 355) to find the solution:

n—2
SSR (4p;,4p,) = >3 ((Pl_ +dP1 ~dp, + dPni-Ap,,)z + (Ql_ +dQ1 +4p; + dQni-Apn)z)

i=1
4p;=0 4p,=0

SSR (4p , 4p,,) =0.00000466

This is what Mathcad Prime 10
SSR (4p;,4p,) =0 gives for its conversion of the
Mathcad 15 Minerr setup.

@Qorsstdahies

dp;

4, := Minerr (4p, , Ap,,)

Solver

dp;
4p,

_|0.00000115
0.00000608

Pni=PptAp
pri=p;+4p, s !

n 11
WRITEPRN [“RHOVALS.prn”, [ p, [|=| 81.60966457
P 353.57432864
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7. Repeat steps 1-6 by clicking on the Mathcad "Calculate Worksheet" command (from the
Math menu), as many times as necessary to get Herget's method to converge. Usually
convergence will be noted as having occurred when the last two RMS values in the RMS
matrix of Step 4 are the same, to three significant figures, and are smaller than any other RMS
value above them in the RMS matrix.

If the RMS does not trend downward after five or so iterations, click on the open GH1
(Herget's Method Initiation) worksheet, define new starting values of p; and p,, and then click
on the "Calculate Worksheet" command while the GH1 worksheet window is still active,
before returning to this GHC (Herget's Method Iteration) worksheet window.
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ANALYSIS OF RESULTS WITH 11 CASSINI OBSERVATIONS

(This analysis assumes that the GH1 worksheet was opened and
"Calculate Worksheet" was clicked once, then the GHC worksheet
was opened and "Calculate Worksheet" was clicked four times.)

NASA's JPL (see Ref. 5, above) reported a perigee distance of 1171 km (actually, 727 miles x
5280 feet/mile x 0.3048 meters/foot x 0.001 km/meter). So our GH1/GHC-derived answer,
after four iterations (i.e., after four "Calculate Worksheet" clicks of GHC), is only 16 km lower
than JPL's best estimate.

NASA's JPL also reported that perigee was on August 17 at 8:28 p.m. PDT. This works out to
August 18 at 3:28 UTC. Now the epoch of our GH1/GHC solution is the time of the first
observation, 1999 August 18.51899 TT. If we retain only the fractional days, convert CONIC; to
fractional days and subtract, then multiply by 24, we get the number of hours. Subtracting
three hours and multiplying by 60 gives the minutes (we must not forget to subtract TT-UT):

CONIC6
0.51899 ————— 124 =3.40890994 (hours)
1440
CONIC
6 64.184 .
0.51899—W +24-3(.60— =23.4648632 (minutes)

We thus find that Cassini's Earth flyby perigee was at 3:23.5 UTC on August 18, about 4.5
minutes earlier than calculated by NASA. Not a bad result, given that (a) we used two-body
mechanics with Herget's method, in itself only a two-parameter fit, and (b) we used only
eleven observations, all taken when Cassini was between 80 and 350 Earth radii distant
from the geocenter!
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