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The objectives of this worksheet are threefold:

1. To show how to use two non-simultaneous sun sights, taken from the same geographical 
location, to fix position. (Two simultaneous star sights taken with a sextant during nautical 
twilight will also work.)

2. To show how to smooth a sequence of sun sights taken over a relatively short time interval, 
so that any two smoothed measurements can be selected and used to produce a two-sight fix. 
The time and altitude data in Richard R. Shiffman's "Sextant Noon-Day Sun Sightings" [1] will 
be used to illustrate the method, but we should note that the sun sights need not all be taken 
near local noon.

3. To calculate the position fixes without recourse to tables. Mathematical models (Mathcad 
procedural functions) for solar position and velocity, precession, nutation, aberration, refraction,
and Earth rotation, as implemented and validated in my worksheet, "Sun Altitudes for Sextant 
Practice" [2], will used here as well.

To achieve objective 3, we use Mathcad's "Reference" capability (see Mathcad 8 User's Guide, 
Chapter 16) to refer to the worksheet "Sun Altitudes for Sextant Practice" (SunAlts.mcdx).

Include <<
C:\Users\astro\Desktop\TA COMPANION\Mathcad Worksheets by Astroger\6. Sun Altitudes for 
Sextant Practice\Sun Altitudes Mathcad Prime 10\SUNALTS Mathcad Prime 10.mcdx

IMPORTANT NOTE

THIS MATHCAD WORKSHEET, "SUN-SIGHT SOLUTIONS WITHOUT TABLES",
SUNSOLS.MCD,

WILL NOT WORK UNLESS THE MATHCAD WORKSHEET, "SUN ALTITUDES 
FOR SEXTANT PRACTICE", SUNALTS.MCD,

HAS ALSO BEEN DOWNLOADED AND RESIDES IN THE SAME FOLDER!

Now we can not only use the procedural functions in "SunAlts.mcdx", but we can also use the 
test case inputs defined therein.
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FIXING POSITION FROM TWO SUN SIGHTS

When an observer measures the altitude of the sun using a sextant, the observer's 
geographical position is known to lie on a "small circle" whose center is at the intersection of the
sun's position vector with Earth's surface, and whose radius is 90 degrees - Alt, where Alt is the 
sun's altitude in degrees. The angle 90 degrees - Alt is also called the sun's zenith angle, and 
denoted by z. Angle z is also the angle between the observer's position vector and the sun's
position vector. The small circle defined by the sun's position vector and z is properly called a 
"circle of position". But it is also called a "line of position", because, when the mariner or 
surveyor plots position on a navigational chart, the two circles of position on the globe typically 
map, to a very good approximation, to two intersecting lines on the chart.

When the observer takes a second, later sun sight at the same geographical location, the 
observer's position now lies at one of the two possible intersections of the two circles of position
on the globe. We will present below a way, using analytical geometry [3], to determine the 
geographical coordinates of the two possible intersection points. We will also provide rules to 
follow to ensure that the intersection determined is the correct one.

Here are the steps:

a. Compute u1 and u2, the Earth-fixed, Greenwich position vectors of the sun at the two sun 
sights.

b. Compute ux, the cross product of u1 and u2, and from it the unit vector n. The vector n is, by 
definition, perpendicular to the two vectors u1 and u2, and defines the direction numbers of a 
line joining the two possible solutions, which line can be written parametrically as

y1 = yo + t1n.

Here yo is an arbitrary point, but y1 is the point that lies on the line midway between the two 
possible solutions.

c. Compute yo by solving two equations in three unknowns, the components of yo, as follows:

u1
.
y0 = sin (Alt1), u2

.
y0 = sin (Alt2),

on the assumption that yo3 = 1, which makes it possible to solve the resulting two equations for 
the two unknowns, yo1 and yo2, using Cramer's Rule.

d. Compute the distance parameter t1 and the vector y1.

e. Compute the parameter tc and the vector uc.

f. Compute latitude f and east longitude l from uc.
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To start, we must select two sun sights to work with. Recall from the "SunAlts.mcdx" worksheet 
that the GMTs and altitudes are given by the arrays:

=GMT

2449096.31902
2449096.3197
2449096.32028
2449096.32094
2449096.3216
2449096.32258
2449096.32338
2449096.32409
2449096.32459
2449096.32558
2449096.32627
2449096.32694
2449096.32755
2449096.32836
2449096.32888
2449096.32957
2449096.33023
2449096.33079
2449096.33155
2449096.33228
2449096.33293
2449096.33362
2449096.33586
2449096.33664
2449096.33728
2449096.33792
2449096.33858
2449096.33909
2449096.33961
2449096.34014

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=Altitude

66.60321
66.63279
66.65618
66.68095
66.70369
66.73385
66.75499
66.7712
66.78143
66.79774
66.80651
66.81281
66.81666
66.81913
66.81907
66.81701
66.81293
66.8079
66.79861
66.78717
66.7749
66.75956
66.69489
66.66656
66.64155
66.61466
66.58483
66.56043
66.53426
66.50622

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=length ((GMT)) 30

Let us choose the first and the last (i.e., the 30th) sextant measurements. But first, for 
convenience, let us compute all 30 solar positions using the Terrestrial Times array JDT and 
the procedural function APPSUN from the "SunAlts.mcdx" worksheet.

≔M APPSUN ((JDT))

=M

2449096.3197 1.78277 11.03898
2449096.32038 1.78281 11.03921
2449096.32096 1.78285 11.03942
2449096.32162 1.78289 11.03964
2449096.32228 1.78293 11.03987
2449096.32327 1.78299 11.04021
2449096.32406 1.78304 11.04049
2449096.32477 1.78308 11.04074
2449096.32528 1.78312 11.04091
2449096.32626 1.78318 11.04126
2449096.32696 1.78322 11.0415
2449096.32763 1.78326 11.04173
2449096.32823 1.7833 11.04194
2449096.32904 1.78335 11.04222
2449096.32956 1.78338 11.0424
2449096.33026 1.78342 11.04264
2449096.33092 1.78347 11.04287
2449096.33147 1.7835 11.04306
2449096.33224 1.78355 11.04333
2449096.33297 1.78359 11.04358
2449096.33361 1.78363 11.04381
2449096.33431 1.78368 11.04405
2449096.33654 1.78381 11.04482
2449096.33733 1.78386 11.0451
2449096.33797 1.7839 11.04532
2449096.3386 1.78394 11.04554
2449096.33926 1.78398 11.04577
2449096.33977 1.78401 11.04594
2449096.34029 1.78405 11.04612
2449096.34082 1.78408 11.04631

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=M

2449096.3197 1.78277 11.03898
2449096.32038 1.78281 11.03921
2449096.32096 1.78285 11.03942
2449096.32162 1.78289 11.03964
2449096.32228 1.78293 11.03987
2449096.32327 1.78299 11.04021
2449096.32406 1.78304 11.04049
2449096.32477 1.78308 11.04074
2449096.32528 1.78312 11.04091
2449096.32626 1.78318 11.04126
2449096.32696 1.78322 11.0415
2449096.32763 1.78326 11.04173
2449096.32823 1.7833 11.04194
2449096.32904 1.78335 11.04222
2449096.32956 1.78338 11.0424
2449096.33026 1.78342 11.04264
2449096.33092 1.78347 11.04287
2449096.33147 1.7835 11.04306
2449096.33224 1.78355 11.04333
2449096.33297 1.78359 11.04358
2449096.33361 1.78363 11.04381
2449096.33431 1.78368 11.04405
2449096.33654 1.78381 11.04482
2449096.33733 1.78386 11.0451
2449096.33797 1.7839 11.04532
2449096.3386 1.78394 11.04554
2449096.33926 1.78398 11.04577
2449096.33977 1.78401 11.04594
2449096.34029 1.78405 11.04612
2449096.34082 1.78408 11.04631

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We specify our two choices of measurements using the indices n1 and n2,

≔n1 1 ≔n2 30

We extract the two values of the right ascension of the sun,

≔α1 ――――
⋅M

,n1 2
15.0

DegPerRad
≔α2 ――――

⋅M
,n2 2

15.0

DegPerRad

and the two values of the declination of the sun, 

≔δ1 ――――
M

,n1 3

DegPerRad
≔δ2 ――――

M
,n2 3

DegPerRad

We compute the two values of the east longitude of the sun,

≔λ1 mod ⎛
⎝

,+-α1 θG ⎛⎝
-GMT

n1
JDo⎞⎠

⋅2 π ⋅2 π⎞
⎠

≔λ2 mod ⎛
⎝

,+-α2 θG ⎛⎝
-GMT

n2
JDo⎞⎠

⋅2 π ⋅2 π⎞
⎠
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Thus the two unit position vectors of the sun, in the Earth-fixed Greenwich reference frame, are

≔u1

⋅cos ⎛⎝δ1⎞⎠ cos ⎛⎝λ1⎞⎠
⋅cos ⎛⎝δ1⎞⎠ sin ⎛⎝λ1⎞⎠

sin ⎛⎝δ1⎞⎠

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔u2

⋅cos ⎛⎝δ2⎞⎠ cos ⎛⎝λ2⎞⎠
⋅cos ⎛⎝δ2⎞⎠ sin ⎛⎝λ2⎞⎠

sin ⎛⎝δ2⎞⎠

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

Their unitized cross product gives the direction numbers of a line joining the two possible 
position fix solutions, 

≔ux ⨯u1 u2 ≔n ――
ux
||ux||

Before proceeding any farther, let us remember that we must apply the semidiameter 
corrections to the altitudes. In this case we add the sun's semidiameter, assuming that the 
sextant measurements were taken by bringing the sun's lower limb to tangency with the local 
horizon. Note that it suffices to treat the sun-Earth distance as 1 A.U. when computing the solar 
semidiameter correction.

We solve for the first and second components of yo by Cramer's Rule.

≔c1 -sin

⎛
⎜
⎜⎝
―――――――――――――

+Altitude
n1

⋅asin ⎛⎝ ⋅4.6525 10-3⎞⎠ DegPerRad

DegPerRad

⎞
⎟
⎟⎠

u13

≔c2 -sin

⎛
⎜
⎜⎝
―――――――――――――

+Altitude
n2

⋅asin ⎛⎝ ⋅4.6525 10-3⎞⎠ DegPerRad

DegPerRad

⎞
⎟
⎟⎠

u23

≔det1

‖
‖
‖
‖‖

c1 u12

c2 u22

⎡
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥⎦

‖
‖
‖
‖‖

≔det2

‖
‖
‖
‖‖

u11
c1

u21
c2

⎡
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥⎦

‖
‖
‖
‖‖

≔det

‖
‖
‖
‖‖

u11
u12

u21
u22

⎡
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥⎦

‖
‖
‖
‖‖

≔yo

――
det1

det

――
det2

det
1

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

We calculate t1, the parametric distance from yo to y1, and then y1 and tc. The quantity tc is 
the parametric distance from y1 to each of the two possible solutions, uc.

≔t1 ⋅-yo n

≔y1 +yo ⋅t1 n ≔tc ‾‾‾‾‾‾‾-1 ⋅y1 y1
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We calculate uc on the assumption that the two azimuth measurements were specified 
in increasing time order (see the two rules provided below).

≔uc -y1 ⋅tc n

≔ϕ ⋅DegPerRad asin ⎛
⎜⎝
uc3

⎞
⎟⎠

≔λ ⋅DegPerRad angle ⎛
⎜⎝

,uc1
uc2

⎞
⎟⎠

=ϕ 33.95647 =λ 241.54834

These work out to latitude f = 33
0 
57.4' and west longitude 360 - l = 118

0 
27.1', the known 

latitude and longitude we used to generate the measurements in the "SunAlts.mcd" worksheet.

There are two important rules to follow in order to ensure that the correct position fix is 
obtained from the two possible solutions, corresponding to uc = y1 +/- tc n.

Rule 1. For a northern hemisphere fix, the first altitude should be the earlier altitude 
measurement and the second altitude should be the later altitude measurement.

Rule 2. For a southern hemisphere fix, the time/altitude order of Rule 1 is reversed.

EXAMPLE USING REALWORLD ALTITUDE MEASUREMENTS

Let us see what happens when we fit a parabola to Richard R. Shiffman's realworld altitude 
measurements, to smooth them, and then solve for pairwise position fixes using smoothed 
measurements. First we retrieve the measurements, contained in file "angles.prn".

≔Angle READPRN ((“angles.prn”))

The format of each entry is "deg min", so we need to convert to degrees. We define and 
invoke function CalcDeg to do the conversion.

≔CalcDeg ((Angle))
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
||

←n length ⎛⎝Angle⟨⟨1⟩⟩⎞⎠
for ∊ |

|
|
|
||

i ‥1 n
‖
‖
‖
‖

←Alt
i

+Angle
,i 1

―――
Angle

,i 2

60

Alt

We place Shiffman's actual altitude measurements into the array ActuAlt.

≔ActuAlt CalcDeg ((Angle))
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We set up a time array, UT, which contains the measurement times, in minutes since the first 
measurement, for our convenience in inspecting the plots of raw and smoothed altitude 
measurements which we are about to generate. We set up a smoothing function which bears 
some explanation:

Mathcad 8 Pro's "regress" function allows us to fit a second-degree polynomial (a parabola) to 
the altitudes ActuAlt as functions of the times UT. Mathcad's "interp" function allows us to
obtain the smoothed values of ActuAlt for each time of interest in UT.

≔UT ⋅(( -GMT 2449096.0)) 1440.0

≔UT -UT UT
1

≔SmoothAlt (( ,UT ActuAlt)) ‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|

←n length ((ActuAlt))
←v regress (( ,,UT ActuAlt 2))

for ∊ |
|
|
|

i ‥1 n
‖
‖‖

←Alt
i

interp ⎛
⎝

,,,v UT ActuAlt UT
i
⎞
⎠

Alt

We now plot the actual altitude measurements, ActuAlt, and the smoothed altitude 
measurements, SmoothAlt.

≔SmoothAlts SmoothAlt (( ,UT ActuAlt))

66.62

66.68

66.74

66.8

66.86

66.92

66.98

67.04

66.5

66.56

67.1

6 9 12 15 18 21 24 27 300 3 33

ActuAlt

SmoothAlts

UT

We see that all of the measurements are of good quality, but that the later ones are better, 
consistent with the observer's (Shiffman's) technique improving as more and more sextant 
measurements were taken.

This all suggests that if we produce "pairwise solutions", i.e., calculate two-sight fixes using 
pairs of smoothed measurements, the later measurement pairs might produce better, i.e., 
more accurate position fixes than the earlier pairs. (The large departures of the raw 
measurements from the smoothed measurements early on suggest that it would be unwise to 
produce pairwise solutions with the raw measurements.) 
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What we do is to define a procedural function, POSFIX, which will produce two-sight fixes for 
pairs of adjacent measurements (though the measurements need not be adjacent for the 
procedure to work). Then we will pass smoothed measurements to POSFIX.

(We should note that, since all of the altitude measurements are more than 65 
degrees, the atmospheric refraction is pretty small, about 25 arc-seconds or 
less. So even though we developed a refraction function in the worksheet 
"SunAlts.mcd", we did not use it in this worksheet.)

≔POSFIX (( ,,,M GMT Smooth n)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i ‥1 2
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←α ――――

⋅M
,⎛

⎝
n
i
⎞
⎠

2
15.0

DegPerRad

←δ ――――

M
,⎛

⎝
n
i
⎞
⎠

3

DegPerRad
←λ mod ⎛

⎜⎝
,+-α θG ⎛

⎜⎝
-GMT

⎛
⎝
n
i
⎞
⎠

JDo⎞
⎟⎠

⋅2 π ⋅2 π⎞
⎟⎠

←u
⟨⟨i⟩⟩

⋅cos ((δ)) cos ((λ))
⋅cos ((δ)) sin ((λ))

sin ((δ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

←c
i

-sin

⎛
⎜
⎜
⎝
―――――――――――――

+Smooth
⎛
⎝
n
i
⎞
⎠

⋅asin ⎛⎝ ⋅4.6525 10-3⎞⎠ DegPerRad

DegPerRad

⎞
⎟
⎟
⎠

u
,3 i

←det
u

,1 1
u

,2 1

u
,1 2

u
,2 2

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

←det1 ‖‖augment ⎛⎝ ,c det
⟨⟨2⟩⟩⎞⎠‖‖

←det2 ‖‖augment ⎛⎝ ,det
⟨⟨1⟩⟩ c⎞⎠‖‖

←det ‖‖det‖‖

←yo

――
det1

det

――
det2

det
1

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

←n ―――
⨯u

⟨⟨1⟩⟩ u
⟨⟨2⟩⟩

|| ⨯u
⟨⟨1⟩⟩ u

⟨⟨2⟩⟩||
←t1 ⋅-yo n

←y1 +yo ⋅t1 n

←tc ‾‾‾‾‾‾‾-1 ⋅y1 y1
←uc -y1 ⋅tc n

⋅DegPerRad asin ⎛
⎜⎝
uc3

⎞
⎟⎠

⋅DegPerRad angle ⎛
⎜⎝

,uc1
uc2

⎞
⎟⎠

⎡
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥⎦
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We define and invoke function PairwiseFIX to produce a table of pairwise solutions using 
adjacent, smoothed altitude measurements.

≔PairwiseFIX ((Smooth)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|

i ‥1 29
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←n i
+i 1

⎡
⎢⎣

⎤
⎥⎦

←P POSFIX (( ,,,M GMT Smooth n))
|
|
|
|
|
|
||

if

else

＝i 1
‖
‖‖

←Table i +i 1 P
1
P

2
⎡
⎣

⎤
⎦

‖
‖‖

←Table stack ⎛
⎝

,Table i +i 1 P
1
P

2
⎡
⎣

⎤
⎦
⎞
⎠

Table

Table row entries
are:

- Pair 1 number,
- Pair 2 number,
- latitude, degrees
- east longitude, 
- degrees

Note that west 
longitude = 360 
degrees minus
east longitude

=PairwiseFIX ((SmoothAlts))

1 2 33.87751 242.81002
2 3 33.87522 242.77781
3 4 33.87316 242.74578
4 5 33.8712 242.71127
5 6 33.86905 242.66779
6 7 33.86722 242.62015
7 8 33.86603 242.5796
8 9 33.86533 242.54668
9 10 33.86468 242.50609

10 11 33.86447 242.46037
11 12 33.86459 242.42314
12 13 33.86495 242.38847
13 14 33.86561 242.35012
14 15 33.86657 242.31411
15 16 33.86762 242.2814
16 17 33.86907 242.24518
17 18 33.87061 242.21292
18 19 33.87247 242.17822
19 20 33.87489 242.1394
20 21 33.87739 242.10407
21 22 33.88003 242.07014
22 23 33.88614 241.99835
23 24 33.89413 241.92706
24 25 33.89801 241.89487
25 26 33.90159 241.86689
26 27 33.90534 241.83919
27 28 33.90881 241.81493
28 29 33.9119 241.79417
29 30 33.9151 241.77356

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

We do indeed observe that the later smoothed measurement pairs produce position fixes better 
than the earlier smoothed measurement pairs. We conclude, then, that the last pair produces 

the best solution, latitude f = 33
0
55' and west longitude 360 - l = 118

0
14'.
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FINAL COMMENTS

This worksheet deals with celestial navigation, astronomical algorithms, and numerical 
methods. We summarize below our conclusions and comments regarding each of these 
areas.

1. As regards celestial navigation, we have presented examples of a two-sight fix method that 
should be valid with any sequence of sun sights, and not just sun sights taken as part of a 
noon-sight solution. Nevertheless, the noon-sight method, as illustrated in Richard R. 
Shiffman's worksheet, is a powerful, proven method of daytime celestial navigation that the 
marine navigator should try to carry out daily, as each voyage day's weather permits.

2. As regards astronomical algorithms, we have seen that it is possible to produce reasonably 
accurate position fixes from sextant measurements, using the astronomical algorithms 
developed in [2]. Yet I still recommend using standard sight reduction tables, along with the 
annual Nautical Almanac, for accurate and reliable sextant sight reduction. In the new era of 
the Global Positioning System (GPS), a GPS handset might well be adopted as the primary 
tool for position fixing. But Celestaire [4] recommends that (sextant-based) celestial navigation 
still be employed as the primary navigation method, and that GPS be used as a backup and 
check method on long voyages by smaller vessels. Do I hear the spirits of ancient, 
shipwrecked mariners crying "Yes!"? 

3. As regards numerical methods, we see that smoothed measurements, as obtained by use 
of Mathcad's "regress" and "interp" functions, produce better, more reliable solutions. Indeed, 
even highly experienced sextant-users can be expected to produce measurement sequences 
that get better as more measurements are taken. Thus, calculating pairwise solutions from 
adjacent, smoothed measurements is believed to have an advantage over an unweighted 
least-squares calculation using the same raw measurements, since the pairwise solutions 
show how the position fix changes as more measurements are taken. (But we should note 
that it is possible in "weighted least squares" to devise a weighting scheme, based upon the 
variances of the altitude measurements, that could account for measurement quality 
improvement as the number of measurements increases.)
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