
UNIFORM ALGORITHM FOR
RECTILINEAR TWO-BODY MOTION

Roger L. Mansfield, 2002 February 15
http://astroger.com

(Updated to PTC's Mathcad Prime 10.0 on 2024 July 23)

In issue #43 of The Orrery, Greg Neill poses and answers the question, "If Earth were to stop in
its orbit and fall into the Sun, how long would it fall?" [1]. This called to my mind a uniform,
two-body theory that I presented at an AIAA conference in 1986 [2]. In this worksheet we
consider "Earth falls into to the Sun" as an application of that theory. We take Earth and the Sun
to be gravitating point masses, or "Newtonian particles", in accordance with the assumptions.

Before we construct our application, we need to define the c-functions c1(x), c2(x), and c3(x) in a
way that will be convenient for use in this worksheet.

≔c1 ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

<||x|| 10-10

‖
‖ ←c1 1

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
||

if

else

>x 0
‖
‖
‖
‖‖

←c1 ―――
sin

⎛⎝ ‾x ⎞⎠

‾x

‖
‖
‖
‖‖

←c1 ――――
sinh ⎛⎝ ‾‾‾-x ⎞⎠

‾‾‾-x

c1

≔c2 ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

<||x|| 10-10

‖
‖ ←c2 0.5

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|

if

else

>x 0
‖
‖
‖
‖

←c2 ――――
-1 cos

⎛⎝ ‾x ⎞⎠
x

‖
‖
‖
‖

←c2 ―――――
-1 cosh ⎛⎝ ‾‾‾-x ⎞⎠

x

c2

≔c3 ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

<||x|| 10-10

‖
‖
‖‖

←c3 ―
1

6

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
||

if

else

>x 0
‖
‖
‖
‖‖

←c3 ―――――
-‾x sin

⎛⎝ ‾x ⎞⎠

⋅x ‾x

‖
‖
‖
‖‖

←c3 ――――――
-‾‾‾-x sinh ⎛⎝ ‾‾‾-x ⎞⎠

⋅x ‾‾‾-x

c3

These functions take advantage of the fact that Stumpff's c-functions have familiar circular and
hyperbolic function representations. But note that, in general, one should use an algorithm such
as the Mathcad procedural function C(x), as given in the Appendix. (Function C(x) employs series
and recursion, and does not need to test whether the argument x is positive, zero, or negative.)

Earthfall Mathcad Prime 10.mcdx Page 1 of 5

≔c3 ((x))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

<||x|| 10-10

‖
‖
‖‖

←c3 ―
1

6

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
||

if

else

>x 0
‖
‖
‖
‖‖

←c3 ―――――
-‾x sin

⎛⎝ ‾x ⎞⎠

⋅x ‾x

‖
‖
‖
‖‖

←c3 ――――――
-‾‾‾-x sinh ⎛⎝ ‾‾‾-x ⎞⎠

⋅x ‾‾‾-x

c3

These functions take advantage of the fact that Stumpff's c-functions have familiar circular and
hyperbolic function representations. But note that, in general, one should use an algorithm such
as the Mathcad procedural function C(x), as given in the Appendix. (Function C(x) employs series
and recursion, and does not need to test whether the argument x is positive, zero, or negative.)

We set up the constants for the Sun-Earth two-body system, for the case of "Earth falls into the
Sun" from x = -1 A.U., and with zero initial orbital velocity in the heliocentric ecliptic plane.

≔k 0.01720209895 Gaussian constant in A.U.3/2 / day.

≔μ 1.00000304 Mass of Sun + Earth, in solar masses.

≔K ⋅k ‾‾μ Two-body constant for Sun-Earth system.

≔ro 1.0 Earth is assumed to be at 1 A.U. at time of fall.

h is the magnitude of the specific angular
momentum vector, h, defined as h = r x v, where r is
the position vector, with components in A.U., and v is
the velocity vector, with components in A.U./day.

≔h 0

The energy parameter, a, is a function of the initial
radius vector magnitude only, since the initial
velocity is assumed to be zero. But in general, since
a is -2 times the total specific mechanical energy of
the two-body system, we have a = 2K

2
/r - v

.
v.

≔α ――
⋅2 K2

ro

Quantity "ecc" is the orbital eccentricity. It is 1 for all
three possible rectilinear paths: rectilinear ellipse (a >
0, h = 0), rectilinear parabola (a = 0, h = 0), and
rectilinear hyperbola (a < 0, h = 0).

≔ecc
‾‾‾‾‾‾‾
-1 ――

⋅α h2

K4

≔p ――
h2

K2
p is the semilatus rectum. It is zero for a rectilinear path.

q is the periapsidal distance. It is zero for a
rectilinear path.

≔q ―――
p

+1 ecc

We can now give the equations for the perifocal* x and y components of Earth's position in the
orbital plane, for the radius vector magnitude, and for time as a function of the "fictitious time",
s. We should note that s is defined by the Sundmann transformation dt/ds = r, i.e., t is the
integral of r ds.

≔y ((s)) ⋅⋅⋅K ‾‾‾‾‾‾‾‾‾⋅q ((+1 ecc)) s c1 ⎛⎝ ⋅α s2 ⎞⎠Earthfall Mathcad Prime 10.mcdx Page 2 of 5

≔x ((s)) -q ⋅⋅K2 s2 c2 ⎛⎝ ⋅α s2 ⎞⎠ ≔y ((s)) ⋅⋅⋅K ‾‾‾‾‾‾‾‾‾⋅q ((+1 ecc)) s c1 ⎛⎝ ⋅α s2 ⎞⎠

≔r ((s)) +q ⋅⋅⋅K2 ecc s2 c2 ⎛⎝ ⋅α s2 ⎞⎠ ≔t ((s)) +⋅q s ⋅⋅⋅K2 ecc s3 c3 ⎛⎝ ⋅α s2 ⎞⎠

*"Perifocal" means that the x-axis lies along the line of apsides and the direction of positive x is
from the origin toward periapsis. In the rectilinear case, periapsis is at the origin and all values of
perifocal x must be zero or negative; all values of perifocal y must be zero.

It is now a simple matter to calculate the time it would take for Earth to fall into the Sun. Since for
elliptical motion the eccentric anomaly E = a

1/2
s, and since we want to fall for half an orbit (a full

orbit would have Earth bouncing off the Sun and coming back out to r = 1 A.U.), we set E equal to
the number of radians in 180 degrees, calculate s from E, and calculate t from s:

≔DegPerRad ――
180

π
≔E ――――

180

DegPerRad

≔s1 ――
E

‾‾α
≔t1 t ⎛⎝s1⎞⎠

=t1 64.56880928 (days)

We plot r and x as functions of t(s) for three "bounces" of Earth off the Sun. The units of r are
A.U. and the units of t are days. First we set up a range of s values as needed for the plots. We
start the plots at t1 because the equations for r, x, and y assume that s and t are zero at periapsis.

≔s , ‥0 10 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

1

145 185 225 265 305 345 385 42565 105 465

r ((s))

t ((s))

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

-1

-0.9

0

145 185 225 265 305 345 385 42565 105 465

x ((s))

t ((s))

In the appendix below we define and test Mathcad procedural function, C(x). C(x) is based
upon an algorithm constructed by Danby [3] to compute the first four c-functions of argument
x by series and recursion.

Earthfall Mathcad Prime 10.mcdx Page 3 of 5

In the appendix below we define and test Mathcad procedural function, C(x). C(x) is based
upon an algorithm constructed by Danby [3] to compute the first four c-functions of argument
x by series and recursion.

REFERENCES

[1] Neill, Greg, "Taking the Fall," The Orrery, Issue #43 (December 2001), pp. 13-15.

[2] Mansfield, Roger L., "Uniform, Non-Singular Path Representation for Highly Energetic Space
Objects," AIAA/AAS Paper No. 86-2269-CP, Williamsburg, Virginia (August 1986).

[3] Danby, J.M.A., Fundamentals of Celestial Mechanics, Second Edition (1988), Willmann-Bell,
Richmond Virginia, p. 173 (http://www.willbell.com).

APPENDIX

The following Mathcad procedural function computes the first four c-functions c0, c1, c2, and c3 of
argument x. Since we have already defined representations for c1, c2, and c3 above, it is a simple
matter now to check the c-functions computed by series and recursion against the c-functions
computed via their circular and hyperbolic representations.

≔C ((x)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←N 0
while |

|
|
|
||

≥||x|| 0.1
‖
‖
‖
‖‖

←x ―
x

4
←N +N 1

←c
3

―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

20

⎛
⎜
⎝

-1 ⋅―
x

42

⎛
⎜
⎝

-1 ⋅―
x

72

⎛
⎜
⎝

-1 ⋅――
x

110

⎛
⎜
⎝

-1 ⋅――
x

156

⎛
⎜
⎝

-1 ――
x

210

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

6

←c
2

―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

12

⎛
⎜
⎝

-1 ⋅―
x

30

⎛
⎜
⎝

-1 ⋅―
x

56

⎛
⎜
⎝

-1 ⋅――
x

090

⎛
⎜
⎝

-1 ⋅――
x

132

⎛
⎜
⎝

-1 ――
x

182

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

2
←c

1
-1 ⋅c

3
x

←c
0

-1 ⋅c
2
x

while |
|
|
|
|
|
|
|
|
|
|
|
|
|

>N 0
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←N -N 1

←c
3

――――

⎛
⎝

+⋅c
1
c
2

c
3
⎞
⎠

4

←c
2

――
⋅c

1
c
1

2
←c

1
⋅c

1
c
0

←c
0

-⋅⋅2 c
0
c
0

1

c

Earthfall Mathcad Prime 10.mcdx Page 4 of 5

≔C ((x)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←N 0
while |

|
|
|
|
|

≥||x|| 0.1
‖
‖
‖
‖‖

←x ―
x

4
←N +N 1

←c
3

―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

20

⎛
⎜
⎝

-1 ⋅―
x

42

⎛
⎜
⎝

-1 ⋅―
x

72

⎛
⎜
⎝

-1 ⋅――
x

110

⎛
⎜
⎝

-1 ⋅――
x

156

⎛
⎜
⎝

-1 ――
x

210

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

6

←c
2

―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

12

⎛
⎜
⎝

-1 ⋅―
x

30

⎛
⎜
⎝

-1 ⋅―
x

56

⎛
⎜
⎝

-1 ⋅――
x

090

⎛
⎜
⎝

-1 ⋅――
x

132

⎛
⎜
⎝

-1 ――
x

182

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

2
←c

1
-1 ⋅c

3
x

←c
0

-1 ⋅c
2
x

while |
|
|
|
|
|
|
|
|
|
|
|
|
|

>N 0
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←N -N 1

←c
3

――――

⎛
⎝

+⋅c
1
c
2

c
3
⎞
⎠

4

←c
2

――
⋅c

1
c
1

2
←c

1
⋅c

1
c
0

←c
0

-⋅⋅2 c
0
c
0

1

c

Here is our check. (We don't need c0, but it is computed by C nevertheless.)

c0 - c3 by series and recursion:

c1 - c3 via circular and hyperbolic functions:

=c1 ((0.5)) 0.91872537 =c1 ⎛⎝-0.5⎞⎠ 1.08544164

=C ((0.5))

0.7602446
0.91872537
0.47951081
0.16254926

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=C ⎛⎝-0.5⎞⎠

1.26059184
1.08544164
0.52118367
0.17088328

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=c2 ((0.5)) 0.47951081 =c2 ⎛⎝-0.5⎞⎠ 0.52118367

=c3 ((0.5)) 0.16254926 =c3 ⎛⎝-0.5⎞⎠ 0.17088328

Earthfall Mathcad Prime 10.mcdx Page 5 of 5

