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Gauss's angles-only orbit determination method uses three (the minimum number) of angles-
only observations to determine a preliminary, two-body solution that fits exactly the three 
observations at hand. Gauss first published his method in 1809 [1]. Variations on the original 
angles-only method have been provided in several textbooks; see, for example, Escobal [2] and 
Danby [3]. In what follows I will work with Escobal's exposition, and will use the Uniform Path 
Mechanics (UPM) theory to extend Gauss's angles-only method, using equations published in [4] 
and [5]. I should note that by the term "UPM theory" I mean the representation of two-body 
paths (position, velocity, and state transition matrix) of arbitrary eccentricity by means of f and g 
functions of Stumpff's c-functions, as treated by Stumpff [6], Stiefel and Scheifele [7], Goodyear 
[8], Danby [9] and Mansfield [10]. 

Escobal provides a concise exposition of Gauss's angles-only method in essentially two forms: 
the original method, with iteration on the three possible area ratios of sector to triangle, and a 
variation that uses the so-called Herrick-Gibbs modification (an orbit determination method in its 
own right, given three positional observations) to provide an approximate solution based upon 
expanding the f and g functions in time series. The original Gaussian method, as presented by 
Escobal, is limited to elliptical orbits. It is certainly possible to construct variants of Gauss's 
method that use algorithms for parabolic and hyperbolic paths, algorithms which closely parallel 
the elliptical orbit algorithm. But the UPM approach that I present below is to be preferred 
precisely because it is uniform: "one form" suffices for all three possible path regimes: elliptical, 
parabolic, and hyperbolic. 

The Herrick-Gibbs modification improves upon the original Gaussian scheme by providing a 
truncated Taylor time series representation of position that works for any path eccentricity. It is a 
"uniform" improvement to the original Gaussian scheme and is very effective. However, the 
representation is not exact because the Taylor time series, one for each positional component, 
together yield a path that only approximates the true two-body path. By expressing Gauss's 
hypergeometric X function as a quotient of c-functions, one makes the sector-to-triangle area 
ratio iteration into a uniform algorithm. In so doing, one extends Gauss's original angles-only 
method so that it becomes an exact two-body orbit determination scheme that has the same 
form for elliptical, parabolic, and hyperbolic paths.

This worksheet will determine the orbit of the minor planet 1997 XF11 using three actual 
observations from Minor Planet Electronic Circular (MPEC) 1997-Y11, dated 1997 December 23. 
The steps are:

1. Specify the three RA/DEC observations relative to the ECI equatorial J2000.0 frame.

2. Specify the sun's location, R, in ECI equatorial coordinates at the three observation times.

3. Convert the RA/DEC observations into three ECI equatorial J2000.0 direction vectors, L.
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1. Specify the three RA/DEC observations relative to the ECI equatorial J2000.0 frame.

2. Specify the sun's location, R, in ECI equatorial coordinates at the three observation times.

3. Convert the RA/DEC observations into three ECI equatorial J2000.0 direction vectors, L.

4. Compute first estimates of the geocentric distances ri (i = 1, 2, 3).

5. Iterate on the ri with sub-iterations on the three possible area ratios y12, y23, and y13.

6. Upon convergence of all iterations, calculate r2 and v2 in HCI equatorial J2000.0 
coordinates.

The final two steps, though not a part of Gauss's angles-only method, are

7. Transform r2 and v2 from the HCI equatorial J2000.0 frame to the HCI ecliptic J2000.0 
frame.

8. Transform r2 and v2 to conic elements.

1. Specify the three RA/DEC observations relative to the ECI equatorial J2000.0 reference
frame.

≔DegPerRad ――
180

π
Set Mathcad ORIGIN to 1 so that vector 
subscripts start with 1 rather than with zero.

≔SecPerDeg 3600.0 ≡ORIGIN 1

≔SecPerRev ⋅SecPerDeg 360.0

≔t
1

+2450788.5 0.47227 =t
1

2450788.97227000 1997 Dec 06.47227

≔t
2

+2450800.5 0.69766 =t
2

2450801.19766000 1997 Dec 18.69766

≔t
3

+2450803.5 0.65311 =t
3

2450804.15311000 1997 Dec 21.65311

≔DEC
1

―――――

+13 ―――
31.27167

60

DegPerRad
=DEC

1
0.23598936

≔DEC
2

―――――

+13 ―――
42.03833

60

DegPerRad
=DEC

2
0.23912126

≔DEC
3

―――――

+13 ―――
48.18167

60

DegPerRad
=DEC

3
0.24090828
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≔DEC
3

―――――

+13 ―――
48.18167

60

DegPerRad

≔RA
1

――――――

⋅15
⎛
⎜
⎝

+07 ―――
58.49583

60

⎞
⎟
⎠

DegPerRad
=RA

1
2.08783192

≔RA
2

――――――

⋅15
⎛
⎜
⎝

+07 ―――
38.23883

60

⎞
⎟
⎠

DegPerRad
=RA

2
1.99944409

≔RA
3

――――――

⋅15
⎛
⎜
⎝

+07 ―――
32.44667

60

⎞
⎟
⎠

DegPerRad
=RA

3
1.97417102

2. Specify the sun's location, R, in ECI equatorial J2000.0 coordinates at the three observation 
times.

We will need function C to calculate the first four c-functions for function U2PM.

≔C ((x)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←N 0
while |

|
|
|
||

≥||x|| 0.1
‖
‖
‖
‖‖

←x ―
x

4
←N +N 1

←c3 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

20

⎛
⎜
⎝

-1 ⋅―
x

42

⎛
⎜
⎝

-1 ⋅―
x

72

⎛
⎜
⎝

-1 ⋅――
x

110

⎛
⎜
⎝

-1 ⋅――
x

156

⎛
⎜
⎝

-1 ――
x

210

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

6

←c2 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

12

⎛
⎜
⎝

-1 ⋅―
x

30

⎛
⎜
⎝

-1 ⋅―
x

56

⎛
⎜
⎝

-1 ⋅――
x

090

⎛
⎜
⎝

-1 ⋅――
x

132

⎛
⎜
⎝

-1 ――
x

182

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

2
←c1 -1 ⋅c3 x

←c0 -1 ⋅c2 x

while |
|
|
|
|
|
|
|
|
|
||

>N 0
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←N -N 1

←c3 ――――
⎛⎝ +⋅c1 c2 c3⎞⎠

4

←c2 ――
⋅c1 c1
2

←c1 ⋅c1 c0
←c0 -⋅⋅2 c0 c0 1

T
c0 c1 c2 c3⎡⎣ ⎤⎦
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We will need the uniform, two-body path propagator function, U2PM, which will be 
invoked by function HGEO.

≔k 0.01720209895 ≔μ 1.0

≔K ⋅k ‾‾μ

≔U2PM (( ,,,,,,K q e i Ω ω Δt))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←α ⋅K2 ―――
(( -1 e))

q
←p ⋅q (( +1 e))

←s ―
Δt

q
←Δs s

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥||Δs|| 0.00000001
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←c C ⎛⎝ ⋅α s2 ⎞⎠
←f -+⋅q s ⋅⋅⋅K2 e s3 c

4
Δt

←Df +q ⋅⋅⋅K2 e s2 c
3

←DDf ⋅⋅⋅K2 e s c
2

|
|
|
|
|
|

if

else

≥Df 0
‖
‖ ←m 1

‖
‖ ←m -1

←Δs ―――――――――――
⋅-5 f

⎛
⎝ +Df ⋅m ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾|| -(( ⋅4 Df))2 ⋅⋅20 f DDf||

⎞
⎠

←s +s Δs

←P
1

-⋅cos ((Ω)) cos ((ω)) ⋅⋅sin ((Ω)) cos ((i)) sin ((ω))

←P
2

+⋅sin ((Ω)) cos ((ω)) ⋅⋅cos ((Ω)) cos ((i)) sin ((ω))

←P
3

⋅sin ((i)) sin ((ω))

←Q
1

-(( +⋅cos ((Ω)) sin ((ω)) ⋅⋅sin ((Ω)) cos ((i)) cos ((ω))))

←Q
2

-(( -⋅sin ((Ω)) sin ((ω)) ⋅⋅cos ((Ω)) cos ((i)) cos ((ω))))

←Q
3

⋅sin ((i)) cos ((ω))

←c C ⎛⎝ ⋅α s2 ⎞⎠
←rcosv -q ⋅⋅K2 s2 c

3

←rsinv ⋅⋅⋅K ‾‾p s c
2

+⋅rcosv P ⋅rsinv Q

1997 XF11 Mathcad Prime 10.mcdx Page 4 of 22



We use function HGEO, which calculates the heliocentric ecliptic J2000.0 coordinates of the 
geocenter, to calculate the ECI equatorial J2000.0 coordinates of the sun.

≔HGEO ((JD)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←JDo 2451545.0

←Tc ―――
-JD JDo

36525.0
←a -1.00000011 ⋅0.00000005 Tc
←e -0.01671022 ⋅0.00003804 Tc
←q ⋅a (( -1 e))
←μ 1.00000304

←K ⋅k ‾‾μ

←n ⋅K a
――
-3

2

←ω ――――――――

+102.94719 ――――
⋅1198.28 Tc

SecPerDeg

DegPerRad

←i ―――――――

-0.00005 ――――
⋅46.94 Tc

SecPerDeg

DegPerRad
←Ω 0.0

←L ―――――――――――――

+100.46435 ⋅―――――――――
+1293740.63 ⋅99 SecPerRev

SecPerDeg
Tc

DegPerRad

←T -JD ――――――
mod (( ,-L ω ⋅2 π))

n
←Δt -JD T
←rEM U2PM (( ,,,,,,K q e i Ω ω Δt))

←LM ――――――――――
mod ⎛⎝ ,+218.0 ⋅481268.0 Tc 360.0⎞⎠

DegPerRad
-rEM1

⋅0.0000312 cos ⎛⎝LM⎞⎠

-rEM2
⋅0.0000312 sin ⎛⎝LM⎞⎠

rEM3

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦
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We will need the obliquity of the ecliptic, e, at J2000.0, in order to transform the HCI ecliptic 
J2000.0 coordinates of Earth to HCI equatorial J2000.0 coordinates.

≔ε ――――
23.4392911

DegPerRad
≔M

1 0 0
0 cos ((ε)) -sin ((ε))
0 sin ((ε)) cos ((ε))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ECEQ ((r)) ⋅M r (Transforms from ecliptic to equatorial.)

≔EQEC ((r)) ⋅M-1 r (Transforms from equatorial to ecliptic.)

SUNPOS computes three HCI equatorial J2000.0 positions of Earth, R
<i>

, then converts them to 
geocentric equatorial J2000.0 positions of the sun, merely by multiplying by -1.

≔SUNPOS ‖
‖
‖
‖
‖
‖

|
|
|
|
|
|

for ∊ |
|
|
|

i ‥1 3
‖
‖
‖

←R
⟨⟨i⟩⟩ ⋅M HGEO ⎛

⎝
t
i
⎞
⎠

-R

(SUNPOS defined.)

≔R SUNPOS (SUNPOS invoked.)

=R
-0.26472805 -0.05423869 -0.00259867
-0.87071490 -0.90133899 -0.90252852
-0.37750688 -0.39078417 -0.39129989

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

(SUNPOS results.)

(These values agree well with the Astronomical Almanac for 1997, p. C23.)
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3. Convert the RA/DEC observations into three ECI equatorial J2000.0 direction vectors, L. 

≔L
⟨⟨1⟩⟩

⋅cos ⎛
⎝
DEC

1
⎞
⎠

cos ⎛
⎝
RA

1
⎞
⎠

⋅cos ⎛
⎝
DEC

1
⎞
⎠

sin ⎛
⎝
RA

1
⎞
⎠

sin ⎛
⎝
DEC

1
⎞
⎠

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

≔L
⟨⟨2⟩⟩

⋅cos ⎛
⎝
DEC

2
⎞
⎠

cos ⎛
⎝
RA

2
⎞
⎠

⋅cos ⎛
⎝
DEC

2
⎞
⎠

sin ⎛
⎝
RA

2
⎞
⎠

sin ⎛
⎝
DEC

2
⎞
⎠

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

≔L
⟨⟨3⟩⟩

⋅cos ⎛
⎝
DEC

3
⎞
⎠

cos ⎛
⎝
RA

3
⎞
⎠

⋅cos ⎛
⎝
DEC

3
⎞
⎠

sin ⎛
⎝
RA

3
⎞
⎠

sin ⎛
⎝
DEC

3
⎞
⎠

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

=L
-0.48060498 -0.40381482 -0.38118897
0.84519469 0.88364934 0.89318099
0.23380504 0.23684898 0.23858478

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

Compute the angle, in degrees, between observations 1 and 3 for reference. (If the angular 
spread is too large, the iteration for the ri, as formulated below, will not converge.)

=⋅acos ⎛⎝ ⋅L
⟨⟨1⟩⟩ L

⟨⟨3⟩⟩⎞⎠ DegPerRad 6.33410354
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4. Compute first estimates of the geocentric distances ri (i = 1, 2, 3).

The key idea of Gauss's angles-only method is that we can write r2 = c1r1 +c3r3, where c1 and c3

are coefficients to be determined, since the two-body (sun and asteroid) orbital motion must take 
place in the plane defined by r1 x r3. We should note that the quantities c1 and c3, as used here,
are not c-functions; they are simply a notation employed for convenience by Escobal [2].

Since r = r - R, we can write c1(r1 - R1) + c3(r3 - R3) - (r2 - R2) = 0, or

c1r1 + c2r2 + c3r3 = c1R1 + c2R2 + c3R3, where c2 = -1.

Since r = rL, we can write c1r1L1 + c2r2L2 + c3r3L3 = G, where

G = c1R1 + c2R2 + c3R3. We will solve for c1 and c3, and then the ri. Quantities c1 and c3

turn out to be functions of the area ratios of sector to triangle y12, y23, and y13.

In Step 4, we carry out a procedure that closely follows Escobal's exposition. We, too, 
write r and r for the geocentric distance vector and its magnitude. But our r is assumed 
to point from geocenter to asteroid, while Escobal's r points from an Earth-fixed 
observer to an artificial Earth satellite. Also, our R is the sun's geocentric position vector, 
while Escobal's R is a vector pointing from the observer to the geocenter. Finally, our r
goes from heliocenter to asteroid, while Escobal's r goes from geocenter to artificial 
Earth satellite. 

As a preliminary step, we calculate the matrix a as the inverse of a matrix, L, whose 

columns are the three observational line-of-sight vectors, L
<i>

. We do this first, because 
if L is not invertible, i.e., if L is singular, we cannot proceed to a solution.

We then compute the modified time intervals t1, t13, and t3. We set up the coefficients a, 

b, and c of the polynomial equation f(x) = x
8

+ ax
6

+bx
3

+ c = 0, and then solve for x, 
which is actually r2, the second position vector's magnitude. The r2 solution leads us to 
first estimates of r1, r2, r3, r1, r2, and r3.

≔a L-1 =‖‖L‖‖ -0.00010488

Note that a is the 
inverse of the matrix L 

having columns L
<1>

, 

L
<2>

, and L
<3>

.

=a
6.90049508 -57.77890783 227.32973598

-68.45566935 243.52716409 -1021.05583243
61.19537459 -185.13402500 795.04314884

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔τ1 ⋅K ⎛
⎝

-t
1

t
2
⎞
⎠

≔τ3 ⋅K ⎛
⎝

-t
3

t
2
⎞
⎠ Compute the modified 

time differences as 
functions of the three 
times t1, t2, and t3.

≔τ13 ⋅K ⎛
⎝

-t
3

t
1
⎞
⎠

≔B

⋅⎛⎝ -⎛⎝τ13⎞⎠
2 ⎛⎝τ3⎞⎠

2 ⎞⎠ ―
A

1

6
0

⋅⎛⎝ -⎛⎝τ13⎞⎠
2 ⎛⎝τ1⎞⎠

2 ⎞⎠ ―
A

3

6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Calculate the vectors A
and B as per the 
notation of Escobal.

≔A

―
τ3
τ13
-1

――
-τ1
τ13

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔B

⋅⎛⎝ -⎛⎝τ13⎞⎠
2 ⎛⎝τ3⎞⎠

2 ⎞⎠ ―
A

1

6
0

⋅⎛⎝ -⎛⎝τ13⎞⎠
2 ⎛⎝τ1⎞⎠

2 ⎞⎠ ―
A

3

6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔X ⎛⎝ TR ⎞⎠
⟨⟨1⟩⟩ ≔Y ⎛⎝ TR ⎞⎠

⟨⟨2⟩⟩ ≔Z ⎛⎝ TR ⎞⎠
⟨⟨3⟩⟩

≔A2 -⎛
⎝

++⋅⋅a
,2 1

A X ⋅⋅a
,2 2

A Y ⋅⋅a
,2 3

A Z⎞
⎠

Calculate A*2, B*2, Cy, and 

R2
2 
, as per the notation of 

Escobal. We have dropped the 
asterisks on A*2 and B*2

because such a notation is not 
permitted in a Mathcad math 
region: if one types an 
asterisk, Mathcad interprets 
this as the multiplication 
symbol. For a similar reason, 
we omit the "squared" 

superscript on R2
2
. 

≔B2 -⎛
⎝

++⋅⋅a
,2 1

B X ⋅⋅a
,2 2

B Y ⋅⋅a
,2 3

B Z⎞
⎠

≔Cψ ⋅-2 ⎛
⎝

++⋅X
2
L

,1 2
⋅Y

2
L

,2 2
⋅Z

2
L

,3 2
⎞
⎠

≔R2 ++⎛
⎝
X

2
⎞
⎠
2 ⎛

⎝
Y
2
⎞
⎠
2 ⎛

⎝
Z
2
⎞
⎠
2

≔aa -⎛⎝ ++⋅Cψ A2 A2
2 R2

⎞⎠ =aa -3.84651722

≔b ⋅-μ ⎛⎝ +⋅Cψ B2 ⋅⋅2 A2 B2⎞⎠ =b 3.75955423

≔c ⋅-μ2 B2
2 =c -0.97333874

Given aa, b, and c, we solve f(x) = x8 + aax6 + bx3 + c = 0 in order to find r2.

≔f ((x)) +++x8 ⋅aa x6 ⋅b x3 c

-120

-80

-40

0

40

80

120

160

-200

-160

200

0.8 1.2 1.6 2 2.4 2.8 3.2 3.60 0.4 4

f ((x))

x
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0

40

80

120

160

-200

-160

200
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f ((x))

x

Mathcad makes it easy to 
plot f(x) as a function of x, 
so that we can determine 
a rough estimate of the 
root r2 by inspection. We 
then use Mathcad's "root" 
function to refine the 
rough estimate.

=f ((1.79636227)) -0.00000026

≔x 2

≔r2 root (( ,f ((x)) x))

=r2 1.79636227

≔u2 ――
μ

r2
3

≔D1 +A
1

⋅B
1
u2 =D1 0.19505016

≔D3 +A
3

⋅B
3
u2 =D3 0.80587207

≔A1 ⎛
⎝

++⋅⋅a
,1 1

A X ⋅⋅a
,1 2

A Y ⋅⋅a
,1 3

A Z⎞
⎠

Calculate A*1, B*1, A*3, and 
B*3, as per the notation of 
Escobal. Again, we have 
dropped the asterisks, as 
they are not permitted in 
Mathcad's math region 
notation.

Upon calculating these 
four quantities, we are at 
last able to write down first 
estimates of r1, r2, and r3, 
and then first estimates of 
r1, r2, and r3. 

≔B1 ⎛
⎝

++⋅⋅a
,1 1

B X ⋅⋅a
,1 2

B Y ⋅⋅a
,1 3

B Z⎞
⎠

≔A3 ⎛
⎝

++⋅⋅a
,3 1

A X ⋅⋅a
,3 2

A Y ⋅⋅a
,3 3

A Z⎞
⎠

≔B3 ⎛
⎝

++⋅⋅a
,3 1

B X ⋅⋅a
,3 2

B Y ⋅⋅a
,3 3

B Z⎞
⎠
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Calculate A*1, B*1, A*3, and 
B*3, as per the notation of 
Escobal. Again, we have 
dropped the asterisks, as 
they are not permitted in 
Mathcad's math region 
notation.

Upon calculating these 
four quantities, we are at 
last able to write down first 
estimates of r1, r2, and r3, 
and then first estimates of 
r1, r2, and r3. 

≔ρ
1

――――
+A1 ⋅B1 u2
D1

≔r
⟨⟨1⟩⟩ -⋅ρ

1
L
⟨⟨1⟩⟩ R

⟨⟨1⟩⟩

≔ρ
2

+A2 ⋅B2 u2 ≔r
⟨⟨2⟩⟩ -⋅ρ

2
L
⟨⟨2⟩⟩ R

⟨⟨2⟩⟩ =‾‾‾‾‾⋅r
⟨⟨2⟩⟩ r

⟨⟨2⟩⟩ 1.79636227

≔ρ
3

――――
+A3 ⋅B3 u2
D3

≔r
⟨⟨3⟩⟩ -⋅ρ

3
L
⟨⟨3⟩⟩ R

⟨⟨3⟩⟩

=ρ
0.89269989
0.86802982
0.86699083

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

=r
-0.16430796 -0.29628461 -0.32788867
1.62522011 1.66837296 1.67690825
0.58622462 0.59637615 0.59815070

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

As a matter of Mathcad notation, the subscripts on the ri are true, or "left-bracket" subscripts 
obtained by typing the r symbol, then left bracket ("["), then the subscript number. The 
subscript number now indicates the row number in the column vector. But the subscripts on 
A1, B1, A3, and B3 are symbolic, or "period" subscripts, obtained by typing the symbol, say "A", 
then period ("."), then the subscript, which is now a part of the symbol. "Period" subscripts are 
thus a means of distinguishing among scalars when they are not necessarily elements of 
some vector or matrix.

Another matter of notation is my own notation for vectors and matrices: in every worksheet 
that works with vectors and matrices, I create a math font called "Vectors & Matrices", which 
is simply a boldface version of the font for scalars. To see this boldface font, click on any 
vector or matrix, and note that "Vectors & Matrices" appears as the font tag in the formatting 
toolbar. (If the formatting toolbar is not visible, click on the View menu, then Toolbars, then 
click on the word "Formatting" to place a checkmark beside it. The formatting toolbar should 
now appear.)

A final matter of notation is that Mathcad allows one to compose vectors into the columns of a 
matrix, and then address the columns of the resulting matrix individually using a "bracketed 
superscript" notation. We have taken advantage of this capability in setting up the matrices R, 
r, and L with one column for each of the three observations.

It is clear that R, r, and L are three 3x3 matrices composed of 3x1 column vectors. E.g., R is 

composed of R
<1>

, R
<2>

, and R
<3>

. But we have just calculated r as a 3x1 vector with 
components r1, r2, and r3. We had earlier defined r = r - R, so that r = r + R. If we had 
needed to, we could have implemented this latter equation for r as the three observational 

equations r
<i>

= r
<i>

+ R
<i>

, for i = 1, 2, 3. Then r1, r2, and r3, as we have just defined and 

calculated them above, would have been the vector magnitudes |r
<1>

|, |r
<2>

|, and |r
<3>

|, 
respectively.

5. Iterate on the ri with sub-iterations on the three possible area ratios y12, y23, and y13.
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We need a velocity-calculating function to be called by function TWOPOE.

≔VELO ⎛⎝ ,,,,,,K Δt rmag1 r1 r2 y Arg⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←c C ((Arg))

←s3 ―――――

⋅⋅K Δt
⎛
⎜
⎝

-1 ―
1

y

⎞
⎟
⎠

c
4

←s2 s3
―
2

3

←f -1 ――
⋅s2 c

3

rmag1

←g ――
⋅K Δt

y

-⋅
⎛
⎜
⎝
―
1

g

⎞
⎟
⎠
r2 ⋅

⎛
⎜
⎝
―
f

g

⎞
⎟
⎠
r1
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We need function EG ("Extended Gauss") to calculate the area ratios of sector to triangle, y.

≔EG ⎛⎝ ,,,K Δt r1 r2⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←rmag1 ‾‾‾‾⋅r1 r1

←rmag2 ‾‾‾‾⋅r2 r2

←cosΔv

‾‾‾‾‾‾‾‾‾‾‾‾‾

――――――

+1 ――――
⋅r2 r1
⋅rmag2 rmag1

2

←l -――――――――
+rmag2 rmag1

⋅⋅4 ‾‾‾‾‾‾‾‾‾‾⋅rmag2 rmag1 cosΔv
―
1

2

←m ―――――――――
⋅K2 ((Δt))2

⎛
⎝ ⋅⋅2 ‾‾‾‾‾‾‾‾‾‾⋅rmag2 rmag1 cosΔv⎞⎠

3

←y 0
←ynew 1

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

≥|| -y ynew|| 10-8

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←y ynew

←x -―
m

y2
l

|
|
|
|
|
|
|
|
|
||

if

else

≥x 0
‖
‖
‖‖

←z ⋅4 asin
⎛⎝ ‾x ⎞⎠

←Arg z2

‖
‖
‖
‖‖

‖
‖
‖
‖

|
|
|
|

←z ⋅4 asin ⎛⎝ ‾‾‾-x ⎞⎠
←Arg -z2

←c C ((Arg))

←d C
⎛
⎜
⎝
――
Arg

4

⎞
⎟
⎠

←X ――
⋅8 c

4

⎛
⎝
d
2
⎞
⎠
3

←ynew +1 ⋅X (( +l x))

ynew
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We need function TWOPOE ("TWO POsition Vector Solution, Extended") to compute the 
velocity at r1 needed to attain r2.

≔TWOPOE ⎛⎝ ,,,K Δt r1 r2⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←rmag1 ‾‾‾‾⋅r1 r1

←rmag2 ‾‾‾‾⋅r2 r2

←cosΔv

‾‾‾‾‾‾‾‾‾‾‾‾‾

――――――

+1 ――――
⋅r2 r1
⋅rmag2 rmag1

2

←l -――――――――
+rmag2 rmag1

⋅⋅4 ‾‾‾‾‾‾‾‾‾‾⋅rmag2 rmag1 cosΔv
―
1

2

←m ―――――――――
⋅K2 ((Δt))2

⎛
⎝ ⋅⋅2 ‾‾‾‾‾‾‾‾‾‾⋅rmag2 rmag1 cosΔv⎞⎠

3

←y 0
←ynew 1

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥|| -y ynew|| 10-8

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←y ynew

←x -―
m

y2
l

|
|
|
|
|
|
|
|
|
||

if

else

≥x 0
‖
‖
‖‖

←z ⋅4 asin
⎛⎝ ‾x ⎞⎠

←Arg z2

‖
‖
‖
‖‖

‖
‖
‖
‖

|
|
|
|

←z ⋅4 asin ⎛⎝ ‾‾‾-x ⎞⎠
←Arg -z2

←c C ((Arg))

←d C
⎛
⎜
⎝
――
Arg

4

⎞
⎟
⎠

←X ⋅⋅8 c
4
⎛
⎝
d
2
⎞
⎠
-3

←ynew +1 ⋅X (( +l x))

←v VELO ⎛⎝ ,,,,,,K Δt rmag1 r1 r2 ynew Arg⎞⎠
augment ⎛⎝ ,r1 ⋅v K⎞⎠
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We define function ITER to allow us to perform a single Gaussian iteration on r.

≔ITER (( ,,,ρ L R K)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

for ∊ |
|
|
|

i ‥1 3
‖
‖
‖

←r
⟨⟨i⟩⟩ -⋅ρ

i
L
⟨⟨i⟩⟩ R

⟨⟨i⟩⟩

←y12 EG ⎛
⎜⎝

,,,K ⎛
⎝

-t
2

t
1
⎞
⎠
r
⟨⟨1⟩⟩ r

⟨⟨2⟩⟩⎞
⎟⎠

←y13 EG ⎛
⎜⎝

,,,K ⎛
⎝

-t
3

t
1
⎞
⎠
r
⟨⟨1⟩⟩ r

⟨⟨3⟩⟩⎞
⎟⎠

←y23 EG ⎛
⎜⎝

,,,K ⎛
⎝

-t
3

t
2
⎞
⎠
r
⟨⟨2⟩⟩ r

⟨⟨3⟩⟩⎞
⎟⎠

←c1 ――――
⋅y13 ⎛
⎝

-t
3

t
2
⎞
⎠

⋅y23 ⎛
⎝

-t
3

t
1
⎞
⎠

←c3 ――――
⋅-y13 ⎛
⎝

-t
1

t
2
⎞
⎠

⋅y12 ⎛
⎝

-t
3

t
1
⎞
⎠

←c2 -1

←G ++⋅c1 R
⟨⟨1⟩⟩ ⋅c2 R

⟨⟨2⟩⟩ ⋅c3 R
⟨⟨3⟩⟩

←ρ
1

―――――――――

⎛
⎝

++⋅a
,1 1

G
1

⋅a
,1 2

G
2

⋅a
,1 3

G
3
⎞
⎠

c1
←ρ

2
-⎛
⎝

++⋅a
,2 1

G
1

⋅a
,2 2

G
2

⋅a
,2 3

G
3
⎞
⎠

←ρ
3

―――――――――

⎛
⎝

++⋅a
,3 1

G
1

⋅a
,3 2

G
2

⋅a
,3 3

G
3
⎞
⎠

c3
ρ

We now use function GAUSS to iterate on r, up to 20 times, as needed.

≔GAUSS (( ,,,ρ L R K)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←Converged 0
for ∊ |

|
|
|
|
|
|
|
|
|
|

j ‥1 20
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|

if ＝Converged 0
‖
‖
‖
‖
‖
‖
‖
‖

←ρnew ITER (( ,,,ρ L R K))
←δρ || -ρnew ρ||

|
|
|

if ≤δρ 0.0001
‖
‖ ←Converged 1

←ρ ρnew

for ∊ |
|
|
|

i ‥1 3
‖
‖
‖

←r
⟨⟨i⟩⟩ -⋅ρ

i
L
⟨⟨i⟩⟩ R

⟨⟨i⟩⟩

r

≔r GAUSS (( ,,,ρ L R K))
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≔r GAUSS (( ,,,ρ L R K))

6. Upon convergence of all iterations, calculate r2 and v2 in HCI equatorial J2000.0 coordinates.

≔PV TWOPOE ⎛
⎜⎝

,,,K ⎛
⎝

-t
3

t
2
⎞
⎠
r
⟨⟨2⟩⟩ r

⟨⟨3⟩⟩⎞
⎟⎠

≔r PV
⟨⟨1⟩⟩ =r

-0.29362476
1.66255252
0.59481607

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔v PV
⟨⟨2⟩⟩ =v

-0.01076435
0.00298672
0.00064000

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

7. Transform r2 and v2 from the HCI equatorial J2000.0 reference frame to the HCI ecliptic 
J2000.0 reference frame.

≔r EQEC ((r)) =r
-0.29362476
1.76196635

-0.11559234

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔v EQEC ((v)) =v
-0.01076435
0.00299484

-0.00060086

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

(Be sure to see the HISTORICAL NOTE, DISCUSSION OF ASSUMPTIONS, and
REFERENCES at the end of this worksheet.)
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8. Convert the position and velocity vectors at the second observation time to conic elements.

For this will need function PVCO to convert position and velocity to conic elements. PVCO
invokes function SCAL1, which we define now.

≔SCAL1 (( ,,,,K α q e υ)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

>α 0
‖
‖
‖
‖
‖
‖
‖

←E -υ ⋅2 atan
⎛
⎜
⎜⎝
―――――――

⋅e sin ((υ))

++1 ‾‾‾‾‾-1 e2 ⋅e cos ((υ))

⎞
⎟
⎟⎠

←s ――
E

‾‾α

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|

←w ⋅⋅―
1

K

‾‾‾‾‾
――
q

+1 e
tan

⎛
⎜
⎝
―
υ

2

⎞
⎟
⎠

|
|
|
|
|
|
|
|
|
||

if

else

＝α 0
‖
‖ ←s ⋅2 w

‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖‖

|
|
|
|
||

←E ⋅2 atanh ⎛⎝ ⋅‾‾‾-α w⎞⎠

←s ――
E

‾‾‾-α

s
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Finally, now, we define function PVCO ("Position and Velocity to COnic Elements").

Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors range 
from 1 through 3 rather than from 0 through 2. Also, the subscripts of c range from 1 through 4 
rather than from 0 through 3.

≔PVCO (( ,,K r v))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←rmag ‾‾‾⋅r r
←h ⨯r v

←hmag ‾‾‾⋅h h

←W ――
h

hmag

←E -――
⋅v v

2
――
K2

rmag
←α ⋅-2 E

←p ⋅hmag2 K-2

←e
‾‾‾‾‾‾‾‾

-1.0 ――
⋅α p

K2

←q ――
p

+1 e

←U ――
r

rmag
←V ⨯W U

←υ angle
⎛
⎜
⎝

,-⋅⋅――
hmag

K2
v V 1.0 ⋅⋅――

hmag

K2
v U

⎞
⎟
⎠

←P -⋅cos ((υ)) U ⋅sin ((υ)) V
←Q +⋅sin ((υ)) U ⋅cos ((υ)) V
←i acos ⎛

⎝
W

3
⎞
⎠

←Ω angle ⎛
⎝

,-W
2
W

1
⎞
⎠

←ω angle ⎛
⎝

,Q
3
P

3
⎞
⎠

←s SCAL1 (( ,,,,K α q e υ))
←c C ⎛⎝ ⋅α s2 ⎞⎠
←Δt +⋅q s ⋅⋅⋅K2 e s3 c

4

q
e

⋅i DegPerRad
⋅Ω DegPerRad
⋅ω DegPerRad

Δt

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
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We now invoke PVCO and place its output into array CONIC.

≔CONIC PVCO (( ,,K r v))

=CONIC

0.75167393
0.47817689
4.05977204

213.71260957
103.32076351
169.94658789

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

We should note that the position vector input to PVCO must have units of A.U. and the velocity 
vector must have units of A.U. per day. We summarize the uniform Gaussian angles-only orbital 
solution as follows.

=CONIC
1

0.75167393 Perihelion distance in A.U.

=CONIC
2

0.47817689 Path eccentricity.

=CONIC
3

4.05977204 Path inclination, in degrees.

=CONIC
4

213.71260957 Celestial longitude of ascending node, 
in degrees.

=CONIC
5

103.32076351 Argument of perihelion, in degrees.

=CONIC
6

169.94658789 Time of flight from perihelion to epoch, in days.

Orbital quantities defined only for an elliptical 
path:≔a ――――

CONIC
1

-1 CONIC
2

=a 1.44047651 Semimajor axis, A.U.

≔n ⋅⋅K a
――
-3

2 DegPerRad
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≔n ⋅⋅K a
――
-3

2 DegPerRad

=n 0.57009181 Mean motion, deg/day

≔P ―――
360.0

⋅365.25 n

=P 1.72889043 Orbital period, Julian years

≔M ⋅n CONIC
6

=M 96.88515854 Mean anomaly, degrees

When we subtract the time of flight from perihelion to epoch, CONIC6, from epoch, t2, we get 
the Julian ephemeris date of perihelion passage:

=-t
2

CONIC
6

2450631.25107

This Julian ephemeris date works out to 1997 July 1.75107. Here is a summary of our Gaussian 
preliminary two-body solution, using just three observations from Minor Planet Electronic 
Circular MPEC 1997-Y11, together with the Minor Planet Center's definitive, perturbed solution 
using 19 observations over the time span 1997 December 6-21.

Orbital Element/Parameter

Time of perihelion passage, TT
Eccentricity
Perihelion distance, A.U.
Argument of perihelion*, deg
Longitude of Asc. Node*, deg
Inclination*, deg

Semimajor axis, A.U.
Mean motion, deg/day
Orbital period, Julian years

Gaussian Value

1997 Jul 1.75107
0.4781769
0.75167393
103.32076
213.71261
4.05977

1.4404765
0.57009181
1.72889043

MPEC 1997-Y11 Value

1997 Jul 1.37109
0.4823930
0.74626491
102.69821
214.03784
4.08628

1.4417597
0.56933087
1.73120120

*Angles are referred to mean ecliptic and equinox of J2000.0.
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HISTORICAL NOTE

The asteroid 1997 XF11 made international headlines when it was determined in March 1998 
that it might strike Earth on October 26, 2028. For more information about the incident, see 
the following contemporaneous references.

Gareth V. Williams, Minor Planet Electronic Circular MPEC 1997-Y11 (23 December 1997).

Brian G. Marsden, IAU Circulars 6837 (11 March 1998) and 6839 (12 March 1998).

Adam Rogers and Sharon Begley, "Never Mind!", Newsweek, March 23, 1998.

Malcolm W. Browne, "In 2028, the sky may fall," The Denver Post, Thursday, March 12, 
1998.

Joseph C. Anselmo, "Asteroid Search", Av. Week & Space Technology, March 23, 1998, p. 
21.

Ron Cowen, "Near-Earth asteroid: A far miss," Science News, Vol. 153 (March 21, 1998), p. 
185.

(For more information about this "Gauss's Angles-Only Method" worksheet 
and related Mathcad worksheets, see "Mathcad Worksheets by Astroger" at 
http://astroger.com.)

DISCUSSION OF OF ASSUMPTIONS

We should take a moment to consider the assumptions made in this worksheet, and how they 
affect the validity of our solution.

a. We have employed UPM, a method of two-body orbit propagation valid for any path 
eccentricity. Since the asteroid was not very close to any major planets, and moved through an 
arc of only about six degrees during the time span of the observations, the assumption of two-
body mechanics seems reasonable. 

b. We have ignored "light-time", the amount if time it took for light from the asteroid to reach the 
observing telescopes on Earth. This is a small effect for the problem at hand: asteroid 1997 XF11

was about 0.9 A.U. away when the three observations used in this worksheet were actually 
made. So the light-time correction amounts to less than eight minutes.

c. We have treated the topocentric, angles-only observations as though they were geocentric, 
i.e., we have ignored the fact that the observers were on Earth's surface, and not at the 
geocenter. Since Earth's radius is about 1/23454.8 A.U., it seems we have ignored a rather 
small effect.

d. Function SUNPOS is a "low-precision", analytical model of the sun's apparent motion in the 
geocentric equatorial J2000.0 reference frame. More accurate solar ephemeris models are 
available, e.g., those in VSOP87 and the JPL ephemerides on CD-ROM. But adopting either 
model would further complicate an already rather complicated worksheet. 
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