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In this worksheet we differentially correct (DC) the orbit of an artificial Earth satellite or space 
probe using a test case specified in worksheet GD1, or in a worksheet derived from GD1. You 
should open worksheet GD1, or your own worksheet derived from GD1, and click on "Calculate 
Worksheet" from the Math menu now, if you have not already done so.

The process that we will use in this worksheet is documented in Refs. [1] and [2] for the 
differential correction of Earth orbits using radar observations, but we will use both optical and 
radar observations in this worksheet. The batch equation of differential correction (BEDC) is:

Xo' = Xo + (ATWA)-1 ATW [ Y - F(Xo) ].

Here Xo is the initial estimate of the state vector, i.e., position and velocity, at epoch to. Xo' is the 
"improved" estimate of Xo at to, obtained by adding to Xo the correction (ATWA)-1 ATW [ Y - F(Xo) ].

If we let N be the number of measurements, then Y is an N-by-1 column vector. We will permit,
for our problem in geocentric motion, type 5 (optical) observations whose measurements consist 
of topocentric right ascension (RA, or a) and declination (DEC, or d), and type 3 (radar) 
observations whose measurements consist of range, azimuth, elevation, and range rate.

F(Xo) is thus an N-by-1column vector of "computed" measurements. What this means is that the 
measurements in each observation are computed via our UPM model of two-body motion, by 
propagating the current estimate, Xo, to the observation times ti for i = 1, ... , n, and by then 
computing the measurements at each observation time, given the specified location of the 
observer. We say "current estimate, Xo" because we will find it necessary to iterate on the BEDC, 
testing for convergence at each iteration by means of a criterion we will define below. If we have 
convergence on a given iteration, then we stop and convert the solution to conic elements. But if 
we do not have convergence, then we replace Xo by Xo' and solve the BEDC again, i.e., iterate.
(We could also implement an iteration counter and stop the DC if some maximum allowable 
number of iterations is reached without convergence, but that is not needed here because we 
iterate the BEDC manually by clicking on "Calculate Worksheet".)

[ Y - F(Xo) ] is the N-by-1column vector of residuals, in the sense "observed minus computed".
The BEDC is a form of the least squares normal equations, N equations in six unknowns, which 
result when one answers the question, "what is a necessary condition that the weighted sum of 
squares of the residuals be a minimum?" Note that the type 5 residuals are not actually Da and D
d, but rather cos d Da and Dd; they are the projections of DL on A and D in turn. (The cos d factor 
can become quite important when the object passes near a celestial pole, where large changes in 
a accompany relatively small changes in arc length in the direction of motion.) Similarly, the type 
3 angular residuals are cos El DAz and DEl.
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A, the "A-matrix", is the N-by-6 array of partial derivatives of the N measurements with respect 
to the six components of the state vector Xo. We will compute the A-matrix from the O-matrix 
and the G-matrix, i.e., A = OG. O is the N-by-6 matrix of partials of the measurements with 
respect to the state vector at observation times ti, for i = 1, ... , n. G is Goodyear's 6-by-6 state 
transition matrix, i.e., the 6-by-6 matrix of partials of the state components at times ti with 
respect to the state components at to. G is therefore a 6-by-6 Jacobian matrix defined at each 
observation time ti, for i = 1, ... , n.

W is the weight matrix. Under the assumption that the measurements are Gaussian random 
variables, and are not correlated (Danby [3] has a good discussion of this), W is a diagonal matrix 
and each diagonal entry is 1/si

2
, where si

2
is the variance of measurement i. (We implement W 

here only for completeness; we will take W as the N-by-N identity matrix in this worksheet.)

Here now is an outline of the steps we will follow:

1. Retrieve the test case values from disk, as specified by worksheet GD1, or as specified by 
your own worksheet that was derived from GD1 by duplication and modification.

Retrieval includes obtaining the initial or current estimate of state, X, and the RMS history 
matrix. Each time you click on "Calculate Worksheet", GDC performs another iteration of 
weighted, batch least squares differential correction. At each iteration the corrected values 
of X are written to disk along with the RMS for that iteration. The corrected values of X thus 
become the current state estimate for the next iteration, and the RMS history is accumulated 
so that you can keep track of how the DC is going.

2. Define the procedural functions needed in the DC: C, FG, GMAT, and FXA.

3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

4. Compute the residuals, DY, the A
T
WA matrix ATWA, and the A

T
WDY matrix, ATWDY.

5. Solve for and apply the corrections to state, DX. Compute the current RMS, display the 
RMS history, and test for convergence.

6. Write the corrected state vector to disk and convert to conic elements.

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.

As a preliminary, we define some constants that we will need, and set the Mathcad 
worksheet ORIGIN to 1 so that subscripts start at unity rather than at zero.

≔DegPerRad ――
180

π
≡ORIGIN 1

≔ae 6378.135 Earth's mean equatorial radius in km:
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1. Retrieve the test case values from disk, as specified by worksheet GD1, or as specified by 
your own worksheet that was derived from GD1 by duplication and modification.

≔n READPRN ((“NOBS.prn”))
1

Number of observations.

≔t READPRN ((“TVALS.prn”)) Observation times.

≔OBTYPE READPRN ((“OBTYPES.prn”)) Observation types.

≔N READPRN ((“NMEAS.prn”))
1

Number of measurements.

≔W READPRN ((“WEIGHTS.prn”)) Measurement weights matrix.

≔R READPRN ((“RVALS.prn”)) Values of R.

≔V READPRN ((“VVALS.prn”)) Values of V.

≔ASEZ READPRN ((“SEZMATS.prn”)) Array of SEZ matrices.

≔Y READPRN ((“YVALS.prn”)) Values of Y.

≔X READPRN ((“STATE.prn”)) State vector (corrected by GDC).

≔Epoch READPRN ((“EPOCH.prn”))
1

Epoch of state vector.

≔RMS READPRN ((“RMS.prn”)) RMS history for state corrections by GDC 
(one entry for each iteration).

≔k 0.074366916133 Set Gaussian constant for geocentric 
orbital motion.

≔μ 1 Assume that mass of secondary (artificial 
Earth satellite or space probe) is negligible 
relative to mass of primary (Earth).

≔K ⋅k ‾‾μ
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2. Define the procedural functions needed in the DC: C, FG, GMAT, and FXA.

For path propagation one needs to calculate only c0 through c3, but for the state transition 
matrix, G, one needs c0 through c5. To keep down the length of this worksheet we define one 
version of C, the one that calculates c0 through c5. (Remember that since the ORIGIN = 1, the 
subscripts of the c-functions that we will use outside of the function C will range from 1 through 
6, rather than from 0 through 5.)

≔C ((x)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←N 0
while |

|
|
|
||

≥||x|| 0.1
‖
‖
‖
‖‖

←x ―
x

4
←N +N 1

←c5 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

42

⎛
⎜
⎝

-1 ⋅―
x

72

⎛
⎜
⎝

-1 ⋅――
x

110

⎛
⎜
⎝

-1 ⋅――
x

156

⎛
⎜
⎝

-1 ⋅――
x

210

⎛
⎜
⎝

-1 ――
x

272

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

120

←c4 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

30

⎛
⎜
⎝

-1 ⋅―
x

56

⎛
⎜
⎝

-1 ⋅――
x

090

⎛
⎜
⎝

-1 ⋅――
x

132

⎛
⎜
⎝

-1 ⋅――
x

182

⎛
⎜
⎝

-1 ――
x

240

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

24

←c3 -―
1

6
⋅c5 x

←c2 -―
1

2
⋅c4 x

←c1 -1 ⋅c3 x

←c0 -1 ⋅c2 x

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

>N 0
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←N -N 1

←c5 ―――――
⎛⎝ ++⋅c2 c3 c4 c5⎞⎠

16

←c4 ―――――
⎛⎝ ++⋅c2 c2 c4 c4⎞⎠

8

←c3 ――――
⎛⎝ +⋅c1 c2 c3⎞⎠

4

←c2 ――
⋅c1 c1
2

←c1 ⋅c1 c0
←c0 -⋅⋅2 c0 c0 1

T
c0 c1 c2 c3 c4 c5⎡⎣ ⎤⎦
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Function UKEP solves the uniform Kepler equation for function FG. FG, in turn, propagates 
position and velocity for function FXA.

≔UKEP ⎛⎝ ,,,τ rmago σo α⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←s ――
τ

rmago
←Δs s

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥||Δs|| 0.00000001
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←c C ⎛⎝ ⋅α s2 ⎞⎠
←F -++⋅⋅rmago s c

2
⋅⋅σo s2 c

3
⋅s3 c

4
τ

←DF ++⋅rmago c
1

⋅⋅σo s c
2

⋅s2 c
3

←DDF +⋅σo c
1

⋅⋅⎛⎝ -1 ⋅rmago α⎞⎠ s c
2

|
|
|
|
|
|

if

else

≥DF 0
‖
‖ ←m 1

‖
‖ ←m -1

←Δs ―――――――――――
⋅-5 F

⎛
⎝ +DF ⋅m ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾|| -(( ⋅4 DF))2 ⋅⋅20 F DDF||

⎞
⎠

←s +s Δs

s

≔FG ⎛⎝ ,,,K ro vo Δt⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←τ ⋅K Δt

←rmago ‾‾‾‾⋅ro ro
←σo ⋅ro vo

←α -――
2

rmago
⋅vo vo

←s UKEP ⎛⎝ ,,,τ rmago σo α⎞⎠
←c C ⎛⎝ ⋅α s2 ⎞⎠
←fr -1 ⋅⋅s2 c

3
rmago

-1

←gr -τ ⋅s3 c
4

←rmag ++⋅rmago c
1

⋅⋅σo s c
2

⋅s2 c
3

←fv ⋅⋅-s c
2
⎛⎝ ⋅rmag rmago⎞⎠

-1

←gv -1 ⋅⋅s2 c
3
rmag-1

K α rmago fr fv
τ s rmag gr gv

⎡
⎢
⎣

⎤
⎥
⎦

Gdc Mathcad Prime 10.mcdx Page 5 of 19



Function GMAT provides the state transition matrix for function FXA.

The state transition matrix formulation that we use below is based upon the seminal works of 
Goodyear [4], [5]. See also Shepperd [6], Battin [7], and Der [8] for more recent expositions.

Before defining GMAT, we define functions S11, S12, S21, and S22 just to make GMAT fit 
horizontally and vertically within the margins of a single Mathcad page.

≔S11 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠
-―――――

+⋅fv s
2

――
-fr 1

rmago
rmago

⋅-fv s
3

――――
⋅⎛⎝ -fr 1⎞⎠ s

2

rmago
⋅⎛⎝ -fr 1⎞⎠ s

3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔S12 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠
⋅-fv s

3
⋅-⎛⎝ -gv 1⎞⎠ s

3

⋅⎛⎝ -fr 1⎞⎠ s
3

⋅gr s
3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔S21 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠

⋅-fv

⎛
⎜
⎜
⎝

++――――
s
1

⋅rmago rmag
―――

1

rmag2
―――

1

rmago
2

⎞
⎟
⎟
⎠

-―――――

+⋅fv s
2

――
-gv 1

rmag

rmag

―――――

+⋅fv s
2

―――
⎛⎝ -fr 1⎞⎠
rmago

rmago
⋅fv s

3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔S22 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠ -―――――

+⋅fv s
2

――
-gv 1

rmag

rmag
――――

⋅-⎛⎝ -gv 1⎞⎠ s
2

rmag
⋅fv s

3
⋅⎛⎝ -gv 1⎞⎠ s

3

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

(Note that because ORIGIN = 1, the subscripts of the c-functions and Goodyear's s-functions 
range from 1 to 6 rather than from 0 to 5. It is especially important to note this difference when 
checking the GMAT formulas against Goodyear's original works.) 

≔GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←fv M
,1 5

←gv M
,2 5

←c C ⎛⎝ ⋅α s2 ⎞⎠

←svec
T

c
1

⋅s c
2

⋅s2 c
3

⋅s3 c
4

⋅s4 c
5

⋅s5 c
6

⎡
⎢⎣

⎤
⎥⎦

←U -+⋅svec
3
τ ⋅s svec

5
⋅3 svec

6

←A augment (( ,r v))

←B
T

augment ⎛⎝ ,ro vo⎞⎠

←ao ―――
-ro

rmago
3

←a ―――
-r

rmag3

←I identity ((3))
←G11 ++⋅fr I ⋅⋅U v Tao ⋅⋅A S11 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G12 +-⋅gr I ⋅⋅U v Tvo ⋅⋅A S12 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G21 ++⋅fv I ⋅⋅U a Tao ⋅⋅A S21 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G22 +-⋅gv I ⋅⋅U a Tvo ⋅⋅A S22 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

stack ⎛⎝ ,augment ⎛⎝ ,G11 G12⎞⎠ augment ⎛⎝ ,G21 G22⎞⎠⎞⎠
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≔GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←fv M
,1 5

←gv M
,2 5

←c C ⎛⎝ ⋅α s2 ⎞⎠

←svec
T

c
1

⋅s c
2

⋅s2 c
3

⋅s3 c
4

⋅s4 c
5

⋅s5 c
6

⎡
⎢⎣

⎤
⎥⎦

←U -+⋅svec
3
τ ⋅s svec

5
⋅3 svec

6

←A augment (( ,r v))

←B
T

augment ⎛⎝ ,ro vo⎞⎠

←ao ―――
-ro

rmago
3

←a ―――
-r

rmag3

←I identity ((3))
←G11 ++⋅fr I ⋅⋅U v Tao ⋅⋅A S11 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G12 +-⋅gr I ⋅⋅U v Tvo ⋅⋅A S12 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G21 ++⋅fv I ⋅⋅U a Tao ⋅⋅A S21 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G22 +-⋅gv I ⋅⋅U a Tvo ⋅⋅A S22 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

stack ⎛⎝ ,augment ⎛⎝ ,G11 G12⎞⎠ augment ⎛⎝ ,G21 G22⎞⎠⎞⎠
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In FXA we will need to calculate the computed measurements (FX) and the partials of the 
measurements at time ti with respect to the state at time ti (the O matrix) for observation i, for 
i=1, ... , n observations. The calculations depend upon whether the observation is type 5 or 3.
Therefore, we define two functions, TYPE5 and TYPE3, to handle the calculations for FXA.

≔TYPE5 (( ,,i j r))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←ρ +r R
⟨⟨i⟩⟩

←ρmag ‾‾‾⋅ρ ρ
←RA angle ⎛

⎝
,ρ

1
ρ
2
⎞
⎠

←DEC asin

⎛
⎜
⎜⎝
――
ρ
3

ρmag

⎞
⎟
⎟⎠

←FX
⋅cos ⎛

⎝
Y

+j 2
⎞
⎠

RA

DEC

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

←O
―――
-sin ((RA))
ρmag

―――
cos ((RA))
ρmag

0 0 0 0

―――――――
⋅-sin ((DEC)) cos ((RA))

ρmag
―――――――

⋅-sin ((DEC)) sin ((RA))
ρmag

――――
cos ((DEC))

ρmag
0 0 0

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

augment (( ,FX O))

Note that in TYPE5 i is the observation index and j is the measurement index. We only need to 
input the position vector r at time ti since the topocentric R.A. and declination measurements 
depend upon the space object's and sensor's positions (the sensor's position, R, is obtained as a 
"global"), but not on their velocities.

Mathcad 15 vs. Mathcad Prime 10

The two Mathcad 15 worksheets for this "Tracking Galileo's Earth 1 Flyby" application were 
hard to convert to Mathcad Prime 10, especially Gdc.xmcd.

Problem is that the Mathcad Prime 10 converter (from Mathcad 15 to Mathcad Prime) does 

not distinguish between vectors, say r = and the scalar representation r = .
x
y
z

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

‾‾‾‾‾‾++x y z

In Mathcad 15, one can create a Math Style "Vectors & Matrices" that is simply the style 
"Variables" with boldface. So Mathcad 15 treats r (r-bold) as a vector and r (r-italic) by the 
rules of vector calculation. But when Mathcad Prime 10 converts such a worksheet, it unbolds 
r and treats it the same as r. I have been able to "work around" this, but it is cumbersome.

The permanent solution, I think, would be to have in Mathcad Prime, in the Mathcad 
Formatting tab, an additional choice, "Vectors" that allows one to specify boldface to 
distinguish vectors from their scalar representation.

I defined this scalar multiplication function "dot" during 
my debugging of this worksheet, and left it in as a 
reminder to say something about the Mathcad Prime 
10 worksheet converter treating vectors r and their 
scalar representations r the same.

≔dot (( ,A B)) ++⋅A
1
B

1
⋅A

2
B

2
⋅A

3
B

3

≔TYPE3 (( ,,,i j r v))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←ρ +r R
⟨⟨i⟩⟩

←ρmag ‾‾‾⋅ρ ρ
←ρdot +⋅v K V

⟨⟨i⟩⟩

←L ――
ρ

ρmag
←rrate_vec ⋅ρdot L

←rrate dot ⎛⎝ ,ρdot L⎞⎠
←SEZ submatrix (( ,,,,ASEZ -⋅3 i 2 ⋅3 i 1 3))

←ρh ⋅TSEZ ρ

←AZ mod ⎛
⎜⎝

,-⋅3 π angle ⎛
⎜⎝

,ρh1
ρh2

⎞
⎟⎠

⋅2 π⎞
⎟⎠

←EL asin

⎛
⎜
⎜⎝
――

ρh3

ρmag

⎞
⎟
⎟⎠

←FX
T

ρmag ⋅cos ⎛
⎝
Y

+j 3
⎞
⎠

AZ EL rrate⎡
⎣

⎤
⎦

←A ⋅SEZ
T

sin ((AZ)) cos ((AZ)) 0[[ ]]

←D ⋅SEZ
T

⋅sin ((EL)) cos ((AZ)) ⋅-sin ((EL)) sin ((AZ)) cos ((EL))⎡⎣ ⎤⎦
←P -ρdot rrate_vec

←O

L
1

L
2

L
3

0 0 0

――
A

1

ρmag
――
A

2

ρmag
――
A

3

ρmag
0 0 0

――
D

1

ρmag
――
D

2

ρmag
――
D

3

ρmag
0 0 0

――
P

1

ρmag
――
P

2

ρmag
――
P

3

ρmag
⋅L

1
K ⋅L

2
K ⋅L

3
K

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

augment (( ,FX O))
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≔TYPE3 (( ,,,i j r v))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←ρ +r R
⟨⟨i⟩⟩

←ρmag ‾‾‾⋅ρ ρ
←ρdot +⋅v K V

⟨⟨i⟩⟩

←L ――
ρ

ρmag
←rrate_vec ⋅ρdot L

←rrate dot ⎛⎝ ,ρdot L⎞⎠
←SEZ submatrix (( ,,,,ASEZ -⋅3 i 2 ⋅3 i 1 3))

←ρh ⋅TSEZ ρ

←AZ mod ⎛
⎜⎝

,-⋅3 π angle ⎛
⎜⎝

,ρh1
ρh2

⎞
⎟⎠

⋅2 π⎞
⎟⎠

←EL asin

⎛
⎜
⎜⎝
――

ρh3

ρmag

⎞
⎟
⎟⎠

←FX
T

ρmag ⋅cos ⎛
⎝
Y

+j 3
⎞
⎠
AZ EL rrate⎡

⎣
⎤
⎦

←A ⋅SEZ
T

sin ((AZ)) cos ((AZ)) 0[[ ]]

←D ⋅SEZ
T

⋅sin ((EL)) cos ((AZ)) ⋅-sin ((EL)) sin ((AZ)) cos ((EL))⎡⎣ ⎤⎦
←P -ρdot rrate_vec

←O

L
1

L
2

L
3

0 0 0

――
A

1

ρmag
――
A

2

ρmag
――
A

3

ρmag
0 0 0

――
D

1

ρmag
――
D

2

ρmag
――
D

3

ρmag
0 0 0

――
P

1

ρmag
――
P

2

ρmag
――
P

3

ρmag
⋅L

1
K ⋅L

2
K ⋅L

3
K

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

augment (( ,FX O))

Note that in TYPE3 we need the type 3 observation count, i3, and the space object's velocity, 
since the computed range rate measurement depends upon velocity. We use i3 to index into 
the sensor velocity array, V, for type 3 observations, because we only calculated sensor velocities 
for the type 3 observations.

Function FXA calculates FX, the N-by-1computed measurements vector, and A, the N-by-6 A-
matrix of partials of the measurements at time ti with respect to the state at time to. (Note that 
in the call to procedural function FG, the time since epoch is converted from days to minutes by
multiplying by 1440 minutes per day.)

≔FXA ⎛⎝ ,,K ro vo⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←j 0
for ∊ |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

i ‥1 n
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←M FG ⎛
⎝

,,,K ro vo ⋅⎛
⎝

-t
i

Epoch⎞
⎠

1440⎞
⎠

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←fv M
,1 5

←gv M
,2 5

←r +⋅fr ro ⋅gr vo
←v +⋅fv ro ⋅gv vo
←G GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if

else

＝OBTYPE
i

5

‖
‖
‖
‖
‖
‖
‖
‖‖

←FXO TYPE5 (( ,,i j r))
for ∊ |

|
|
|

k ‥1 2
‖
‖‖

←FX
+j k

FXO
,k 1

←O submatrix (( ,,,,FXO 1 2 2 7))
←j +j 2

‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|

←FXO TYPE3 (( ,,,i j r v))
for ∊ |

|
|
|

k ‥1 4
‖
‖‖

←FX
+j k

FXO
,k 1

←O submatrix (( ,,,,FXO 1 4 2 7))
←j +j 4

|
|
|
|
|
|

if

else

＝i 1
‖
‖ ←A ⋅O G

‖
‖ ←A stack (( ,A ⋅O G))

augment (( ,FX A))
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≔FXA ⎛⎝ ,,K ro vo⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←j 0
for ∊ |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

i ‥1 n
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←M FG ⎛
⎝

,,,K ro vo ⋅⎛
⎝

-t
i

Epoch⎞
⎠

1440⎞
⎠

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←fv M
,1 5

←gv M
,2 5

←r +⋅fr ro ⋅gr vo
←v +⋅fv ro ⋅gv vo
←G GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

if

else

＝OBTYPE
i

5

‖
‖
‖
‖
‖
‖
‖
‖‖

←FXO TYPE5 (( ,,i j r))
for ∊ |

|
|
|

k ‥1 2
‖
‖‖

←FX
+j k

FXO
,k 1

←O submatrix (( ,,,,FXO 1 2 2 7))
←j +j 2

‖
‖
‖
‖
‖
‖
‖
‖
‖

‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|

←FXO TYPE3 (( ,,,i j r v))
for ∊ |

|
|
|

k ‥1 4
‖
‖‖

←FX
+j k

FXO
,k 1

←O submatrix (( ,,,,FXO 1 4 2 7))
←j +j 4

|
|
|
|
|
|

if

else

＝i 1
‖
‖ ←A ⋅O G

‖
‖ ←A stack (( ,A ⋅O G))

augment (( ,FX A))

Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.
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Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

≔ro

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

≔vo ⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

―
1

K

≔M FXA ⎛⎝ ,,K ro vo⎞⎠

≔FX M
⟨⟨1⟩⟩ ≔A submatrix (( ,,,,M 1 N 2 7))

(Click on the FX column vector and
scroll down to see all N entries.)

(Click on the A matrix and scroll down 
to see all N rows. Scroll right to see all 
6 columns.)

=FX

0.53509441
1.72538124
0.16172659

-0.09129529
0.51001924
1.77174893
0.17444278

-0.08706324
0.4937401
⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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=A

0.86804784 0.47879998 -0.00617182 -0.2161988 -0.12289927 0.00349622
0.62435882 -1.11510465 -1.31778422 -0.15494362 0.27990112 0.33466998
0.75868462 -1.18189345 1.30905907 -0.17891191 0.29055028 -0.32284142
0.09578695 -0.03276068 0.0743451 0.04099315 0.04643557 -0.02053131
0.887664 0.44414926 -0.03508495 -0.20255143 -0.10414898 0.00963509
0.57631235 -1.22825559 -1.3742512 -0.13094094 0.28225292 0.31874691
0.76018643 -1.23770905 1.3821127 -0.16537521 0.27933022 -0.31293719
0.09008717 -0.04306445 0.06885445 0.04565066 0.04514879 -0.0197498
0.90053959 0.41775929 -0.05638722 -0.19274334 -0.09171823 0.01348779

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

4. Compute the residuals, DY, the A
T
WA matrix ATWA, and the A

T
WDY matrix, ATWDY.

≔ΔY -Y FX ≔ATWA ⋅⋅TA W A

≔ATWΔY ⋅⋅TA W ΔY

=ΔY

-0.00006341
-0.00018637
-0.0022384
-0.00000269
-0.00006327
-0.00017612
-0.00076507
-0.00000171
-0.00006287
-0.00013063
-0.00026644
0.00000018

-0.00006332
-0.0001298
-0.00028689
0.00000274

-0.00006217
-0.00015231
-0.00032036
0.00000743

-0.00006038
-0.00002926

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

(Click on the DY column vector and
scroll down to see all N entries.)
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=ATWA

100.73242292 -26.52813647 43.91107588 -4.88953748 -64.9870653 -27.39583008
-26.52813647 199.70148133 -33.31644608 20.79665186 128.8128128 51.13137564
43.91107588 -33.31644608 132.58865033 -5.14029743 -32.69634822 -14.34080037
-4.88953748 20.79665186 -5.14029743 23.59807951 48.37234078 24.94057678

-64.9870653 128.8128128 -32.69634822 48.37234078 267.48905266 114.50625751
-27.39583008 51.13137564 -14.34080037 24.94057678 114.50625751 63.36510271

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

=ATWΔY

-0.0000004
-0.00000095
-0.00000046
-0.00000036
-0.00000092
-0.00000057

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

5. Solve for and apply the corrections to state, DX. Compute the current RMS, display the 
RMS history, and test for convergence.

≔ΔX ⋅ATWA-1 ATWΔY
=ΔX

- ⋅4.74114971 10-9

- ⋅4.45461098 10-9

- ⋅3.72644534 10-9

- ⋅8.3371872 10-9

⋅3.39887074 10-9

-0.00000001

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔X +stack ⎛⎝ ,ro vo⎞⎠ ΔX

≔WSS ∑
=i 1

N

⎛
⎝

⋅W
,i i

ΔY
i
⎞
⎠
2 Weighted sum of squares 

of residuals.

=WSS 0.00009916

≔WRMS ⋅
‾‾‾‾
――
WSS

N
ae Weighted RMS in km.
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=WRMS 4.58373841

≔PWSS ∑
=i 1

6

⎛
⎝

⋅ATWΔY
i
ΔX

i
⎞
⎠

Predicted weighted sum of squares 
of residuals for next iteration.

=PWSS ⋅1.41375378 10-14

≔PWRMS ⋅
‾‾‾‾‾‾‾‾‾‾‾
―――――
|| -WSS PWSS||

N
ae Predicted weighted RMS for 

next iteration, in km.

=PWRMS 4.58373841

≔Converged ‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
||

|
|
|
|
|
|

if

else

<|| -WRMS PWRMS|| ⋅0.01 WRMS
‖
‖ 1

‖
‖ 0

=Converged 1

=APPENDPRN (( ,“RMS.prn” WRMS Converged[[ ]]))

0 0
5.0433802 0
4.5837376 1
4.58373841 1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔RMS READPRN ((“RMS.prn”))

RMS History: =RMS

0 0
5.043 0
4.584 1
4.584 1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

Number of iterations:

≔Iterations -rows ((RMS)) 1

=Iterations 3
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6. Write the corrected state vector to disk and convert to conic elements.

=WRITEPRN

⎛
⎜
⎜
⎜
⎜
⎝

,“STATE.prn” stack

⎛
⎜
⎜
⎜
⎜
⎝

,

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

K

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

0.82564645
-0.6324892
0.49067332

-0.04889401
-0.10631182
-0.05486373

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

Compute and display the conic elements by calling function PVCO to transform position and 
velocity to conic elements.

≔r1

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

=⋅r1 ae

5266.08454
-4034.10149
3129.58065

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔v1 ⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

K =⋅v1 ―
ae
60

-5.19754366
-11.30118540
-5.83213765

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

PVCO invokes function SCAL1, which we define now.

≔SCAL1 (( ,,,,K α q e υ)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

>α 0
‖
‖
‖
‖
‖
‖
‖

←E -υ ⋅2 atan
⎛
⎜
⎜⎝
―――――――

⋅e sin ((υ))

++1 ‾‾‾‾‾-1 e2 ⋅e cos ((υ))

⎞
⎟
⎟⎠

←s ――
E

‾‾α

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|

←w ⋅⋅―
1

K

‾‾‾‾‾
――
q

+1 e
tan

⎛
⎜
⎝
―
υ

2

⎞
⎟
⎠

|
|
|
|
|
|
|
|
|
||

if

else

＝α 0
‖
‖ ←s ⋅2 w

‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖‖

|
|
|
|
||

←E ⋅2 atanh ⎛⎝ ⋅‾‾‾-α w⎞⎠

←s ――
E

‾‾‾-α

s
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Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors 
range from 1 through 3 rather than from 0 through 2. Also, the subscripts of c range from 1
through 4 rather than from 0 through 3.)

≔PVCO (( ,,K r v))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←rmag ‾‾‾⋅r r
←h ⨯r v

←hmag ‾‾‾⋅h h

←W ――
h

hmag

←E -――
⋅v v

2
――
K2

rmag
←α ⋅-2 E

←p ―――
hmag2

K2

←e ‾‾‾‾‾‾‾‾‾‾‾-1.0 ⋅⋅α p K-2

←q ――
p

+1 e

←U ――
r

rmag
←V ⨯W U

←υ angle
⎛
⎜
⎝

,-⋅⋅――
hmag

K2
v V 1.0 ⋅⋅――

hmag

K2
v U

⎞
⎟
⎠

←P -⋅cos ((υ)) U ⋅sin ((υ)) V
←Q +⋅sin ((υ)) U ⋅cos ((υ)) V
←i acos ⎛

⎝
W

3
⎞
⎠

←Ω angle ⎛
⎝

,-W
2
W

1
⎞
⎠

←ω angle ⎛
⎝

,Q
3
P
3
⎞
⎠

←s SCAL1 (( ,,,,K α q e υ))
←c C ⎛⎝ ⋅α s2 ⎞⎠
←Δt +⋅q s ⋅⋅⋅K2 e s3 c

4

q
e

⋅i DegPerRad
⋅Ω DegPerRad
⋅ω DegPerRad

Δt

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
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We now invoke PVCO and place its output into array CONIC.

≔CONIC PVCO ⎛⎝ ,,K r1 v1⎞⎠

=CONIC

1.14999772
2.47318712

143.00229017
103.78192276
134.87129494
-0.00405756

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

We should note that the position vector input to PVCO must have units of E.R. and the velocity 
vector must have units of E.R. per minute. We summarize the weighted batch least squares 
orbital solution as follows.

=⋅⎛
⎝

-CONIC
1

1⎞
⎠
ae 956.70571 Perigee height in km, relative to spherical 

Earth figure.

=CONIC
2

2.47318712 Path eccentricity.

=CONIC
3

143.00229 Path inclination, in degrees.

=CONIC
4

103.78192 Right ascension of ascending node, in degrees.

=CONIC
5

134.87129 Argument of perigee, in degrees.

=CONIC
6

-0.00406 Time of flight from perigee to epoch, in minutes.

We have the height of perigee above a spherical Earth figure, but for a closest approach 
determination, it would be more accurate to have the actual height of the spacecraft above 
its subpoint on a oblate spheroidal Earth at the instant of perigee. We calculate this now.

≔f ―――
1

298.26
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≔f ―――
1

298.26
Earth's polar vs. equatorial flattening factor.

Eccentricity of Earth's meridional 
reference ellipse.≔ee

‾‾‾‾‾‾-⋅2 f f2

We define procedural function GRT, which inputs an artificial Earth satellite's position vector
and outputs the geodetic latitude of the subsatellite point (subpoint), and the satellite's height 
above the subpoint.

≔GRT ((r))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←rmag ‾‾‾⋅r r

←δ asin

⎛
⎜
⎜⎝
――
r
3

rmag

⎞
⎟
⎟⎠

←ϕc δ

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
||

j ‥1 4
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←rs ――――――
‾‾‾‾‾-1 ee

2

‾‾‾‾‾‾‾‾‾‾‾‾‾-1 ⎛⎝ ⋅ee cos ⎛⎝ϕc⎞⎠⎞⎠
2

←ϕs atan
⎛
⎜
⎜⎝
―――
tan ⎛⎝ϕc⎞⎠

-1 ee
2

⎞
⎟
⎟⎠

←Hs -‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾-rmag2 ⎛⎝ ⋅rs sin ⎛⎝ -ϕs ϕc⎞⎠⎞⎠
2 ⋅rs cos ⎛⎝ -ϕs ϕc⎞⎠

←ϕc -δ asin
⎛
⎜
⎝
―――――

⋅Hs sin ⎛⎝ -ϕs ϕc⎞⎠
rmag

⎞
⎟
⎠

ϕs
Hs

⎡
⎢
⎣

⎤
⎥
⎦

≔Δt -CONIC
6

≔M FG
⎛
⎜
⎝

,,,K r1 ―
v1
K

Δt
⎞
⎟
⎠

≔fr M
,1 4

≔gr M
,2 4

≔r +⋅fr r1 ⋅gr ―
v1
K

≔LatHt GRT ((r))

Geodetic latitude, fs, and height above spheroid, Hs, at time of perigee passage:

=⋅LatHt
1
DegPerRad 25.37357 (degrees)

=⋅LatHt
2
ae 960.60847 (km)

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.
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