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Many plant species exhibit physiological responses to the duration of daylight, or to changes 
in the duration of daylight, as the days progress through the tropical year. "Photoperiodism" is 
the name that plant physiologists have given to this phenomenon, while "photoperiod" is the 
name given to the duration of daylight. I first became aware of these concepts as the result of 
some calculations that I did for Dr. Frank B. Salisbury, in support of his textbook in plant 
physiology [1].

The Photoperiod Equation. Recently, at the request of Brazilian plant physiologist Dr. Lilian B. 
P. Zaidan, I developed a Mathcad worksheet that calculates the photoperiod as a function of 
day number and geographic latitude [2]. In that worksheet, I calculated the photoperiod by 
subtracting the time of sunrise from the time of sunset for each day of the year 2003, for 

varying geographic latitudes (from 5
o
S to 25

o
S in 5

o
increments, for Brazil).

I then showed, in an addendum to the worksheet, that one can deduce a simpler formula from 
the more rigorous astronomical calculations. The simpler formula agrees with the more 
rigorous astronomical calculations to within about 2-3 minutes.

But upon further reflection, I have come to realize that the simpler formula can be made even 
more simple, and yet more accurate, with a just few changes. The purpose of this worksheet, 
then, is to show how to make the changes needed to arrive at an even simpler, yet more 
accurate formula.

We will need the following constants from the cited worksheet in what follows.

≔DegPerRad ――
180

π
Number of degrees in one radian.

≔ωE ―――――
360.98564735

DegPerRad
Earth's rotation rate in radians/day.

≔R ⋅―
50

60
――――

1

DegPerRad
Twilight factor (set to its value for sunrise 
and sunset).

Given these constants, we now can now restate the "Photoperiod Equation" and the two 
examples of its usage that were provided in the addendum to [2]. For the Sun's declination, d, 
and the geographic latitude, L, we have, in minutes,

Calculating Photoperiod - II Mathcad Prime 10.mcdx Page 1 of 7



≔Photoperiod (( ,δ L)) ⋅―――――――――――

+π ⋅2 asin
⎛
⎜
⎝
―――――――

+sin ((R)) ⋅sin ((L)) sin ((δ))
⋅cos ((L)) cos ((δ))

⎞
⎟
⎠

ωE

1440

At the southern hemisphere winter and summer solstices in the year 2003, for which d = 

23.4389 degrees and d = -23.4389 degrees, respectively, we obtain for latitude 25
o
S:

=Photoperiod
⎛
⎜
⎝

,――――
23.4389

DegPerRad
――――

-25

DegPerRad

⎞
⎟
⎠

633.1

=Photoperiod
⎛
⎜
⎝

,――――
-23.4389

DegPerRad
――――

-25

DegPerRad

⎞
⎟
⎠

819.3

The values computed by rigorous astronomical calculation are 635.0 and 821.8 minutes, 
respectively. This is good agreement, but is it possible to improve the accuracy of the 
photoperiod equation just given, without further complicating it? I realized today that the 
answer is yes.

I came to this realization as follows. First, it troubled me that the agreement was not better, 
so I asked myself how a 1.9 minute error at the southern winter solstice and a 2.5 minute 
error at the summer solstice could arise. I then considered that wE, Earth's rotation rate, is
measured with respect to the moving vernal equinox, and not with respect to the moving 
Sun.

The fact that the Sun moves eastward at a mean rate of 0.98564735 degrees per day, in the 
same direction that Earth rotates, means that the actual photoperiod is longer (by about two 
minutes at the spring and fall equinoxes) than calculated by the photoperiod equation given 
above. We want to modify this photoperiod equation so that we can account for this effect all 
year long. Thus we see that we do not want wE in the denominator, but rather we want

wE* = (360.98564735 - 0.98564735)/DegPerRad = 360/DegPerRad = 2p radians.

If we divide the numerator on the right side of the photoperiod equation by wE* instead of by
wE, we obtain the following equation.

≔Photoperiod (( ,δ L)) ⋅―――――――――――

+π ⋅2 asin
⎛
⎜
⎝
―――――――

+sin ((R)) ⋅sin ((L)) sin ((δ))
⋅cos ((L)) cos ((δ))

⎞
⎟
⎠

⋅2 π
1440

Upon further simplification, we have the following.
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Simplified Photoperiod Equation

≔Photoperiod (( ,δ L)) +720 ⋅――
1440

π
asin

⎛
⎜
⎝
―――――――

+sin ((R)) ⋅sin ((L)) sin ((δ))
⋅cos ((L)) cos ((δ))

⎞
⎟
⎠

With this simplified photoperiod equation, we obtain southern hemisphere summer and winter 
solstice values as follows. 

=Photoperiod
⎛
⎜
⎝

,――――
23.4389

DegPerRad
――――

-25

DegPerRad

⎞
⎟
⎠

634.9

=Photoperiod
⎛
⎜
⎝

,――――
-23.4389

DegPerRad
――――

-25

DegPerRad

⎞
⎟
⎠

821.5

The summer solstice value is off by only about 0.1 minute, and the winter solstice value is off 
by only about 0.3 minute.

Our final Simplified Photoperiod Equation is much more descriptive as well. It says that the 
photoperiod is half a day, plus or minus a term that depends upon d, L, and R. This description 
makes sense, and also makes the photoperiod equation much easier to remember.

The Photoperiod Rate Equation. As noted above, both the photoperiod and its diurnal rate of 
change are of interest in plant physiology. We can easily calculate the diurnal rate by 
subtracting one day's photoperiod from the next, and then dividing by one day (i.e., by unity). 
Then we have the photoperiod rate in minutes per day.

However, just as we were able to find an analytical expression for the photoperiod, we can 
find an analytical expression for the photoperiod rate, by differentiating the photoperiod 
equation with respect to time. We do this by first differentiating the Sun's declination d with 
respect to day number d. Then we differentiate the photoperiod with respect to d. By the 
"chain rule" of the calculus, the diurnal rate of change of photoperiod is then the product (Dd 

Photoperiod) x (Dd d).

To see how to differentiate the Sun's declination with respect to d, let us revisit our equations 
for calculating the declination, d, as given in [2]. We have for the year 2003 that

≔eo 0.01670785 ≔io ――――
23.4389

DegPerRad

≔ωo ――――
282.9920

DegPerRad
≔Mo ――――

356.2657

DegPerRad

≔A1 ⋅2 eo ≔A2 ⋅―
5

4
eo

2

≔B1 cos ⎛⎝io⎞⎠ ≔B2 sin ⎛⎝io⎞⎠
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Now, writing out the equations needed to calculate the Sun's declination, we have 

≔M ((d)) +Mo ――――
⋅0.9856 d

DegPerRad

≔υ ((M)) ++M ⋅A1 sin ((M)) ⋅A2 sin (( ⋅2 M))

≔u ((υ)) mod ⎛⎝ ,+υ ωo ⋅2 π⎞⎠

≔δ ((u)) asin ⎛⎝ ⋅B2 sin ((u))⎞⎠

The corresponding derivative functions are as follows.

≔Md ((d)) ――――
0.9856

DegPerRad

≔υM ((M)) ++1 ⋅A1 cos ((M)) ⋅⋅2 A2 cos (( ⋅2 M))

≔uυ ((υ)) 1

≔δu ((u)) ――――――
⋅B2 cos ((u))

‾‾‾‾‾‾‾‾‾‾‾‾‾-1 ⎛⎝ ⋅B2 sin ((u))⎞⎠
2

By the chain rule, we can obtain the derivative of d with respect to d by multiplying the 
successive derivatives.

≔δd ((d)) ⋅⋅⋅δu ((u ((υ ((M ((d)))))))) 1 υM ((M ((d)))) Md ((d))

To differentiate photoperiod with respect to d, we let Mathcad assist via its Maple symbolic 
differentiation capability. Using x temporarily in place of d, we obtain the following.

→――
d

dx
Photoperiod (( ,x L)) ――――――――――――――――――――――――――

+⋅⋅1440 sin ((x)) sin
⎛
⎜
⎝
――
π

216

⎞
⎟
⎠

+⋅⋅1440 sin ((L)) sin ((x))
2

⋅⋅1440 cos ((x))
2

sin ((L))

⋅⋅⋅π cos ((L)) cos ((x))
2

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

+-――――――――――――――――――

++sin
⎛
⎜
⎝
――
π

216

⎞
⎟
⎠

2

⋅⋅⋅2 sin ((L)) sin ((x)) sin
⎛
⎜
⎝
――
π

216

⎞
⎟
⎠

⋅sin ((L))
2

sin ((x))
2

⋅cos ((L))
2

cos ((x))
2

1
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This simplifies to the rate of change of photoperiod, with respect to declination, as follows.

≔Photorate (( ,δ L)) ⋅――
1440

π
――――――――――――

+tan ((L)) ⋅―――――――
+sin ((R)) ⋅sin ((L)) sin ((δ))

⋅cos ((L)) cos ((δ))
tan ((δ))

⎛
⎜
⎜⎝

-1 ――――――――
(( +sin ((R)) ⋅sin ((L)) sin ((δ))))2

⋅cos ((L))
2

cos ((δ))
2

⎞
⎟
⎟⎠

―
1

2

Now the photoperiod rate that we seek is a product of this derivative and dd(d).

≔δ1 ((d)) δ ((u ((υ ((M ((d))))))))

≔Photorate1 (( ,d L)) ⋅Photorate (( ,δ1 ((d)) L)) δd ((d))

It is easy to check this formula. Let's do it for, say, day number 49 (February 18).

=Photorate1
⎛
⎜
⎝

,49 ――――
-25

DegPerRad

⎞
⎟
⎠

-1.4

=Photoperiod
⎛
⎜
⎝

,δ1 ((49)) ――――
-25

DegPerRad

⎞
⎟
⎠

772.5

=Photoperiod
⎛
⎜
⎝

,δ1 ((50)) ――――
-25

DegPerRad

⎞
⎟
⎠

771.1

=-Photoperiod
⎛
⎜
⎝

,δ1 ((50)) ――――
-25

DegPerRad

⎞
⎟
⎠

Photoperiod
⎛
⎜
⎝

,δ1 ((49)) ――――
-25

DegPerRad

⎞
⎟
⎠

-1.4

Now let's do a plot for the entire year 2003, for latitudes 25
o
N, 50

o
N, and 65

o
N, comparing the 

analytically computed photoperiod rates with the numerically computed photoperiod rates.

≔Curve1 (( ,N L)) ‖
‖
‖
‖
‖‖

|
|
|
|
||

for ∊ |
|
|
|

i ‥1 N
‖
‖‖

←Rate
i

-Photoperiod (( ,δ1 (( +i 1)) L)) Photoperiod (( ,δ1 ((i)) L))

Rate

≔Curve2 (( ,N L)) ‖
‖
‖
‖
‖‖

|
|
|
|
||

for ∊ |
|
|
|

i ‥1 N
‖
‖‖

←Rate
i

Photorate1 (( ,i L))

Rate
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≔Curve2 (( ,N L)) ‖
‖
‖
‖
‖‖

|
|
|
|
||

for ∊ |
|
|
|

i ‥1 N
‖
‖‖

←Rate
i

Photorate1 (( ,i L))

Rate

≔Curve25N1 Curve1
⎛
⎜
⎝

,366 ――――
25

DegPerRad

⎞
⎟
⎠

≔Curve25N2 Curve2
⎛
⎜
⎝

,366 ――――
25

DegPerRad

⎞
⎟
⎠

≔Curve50N1 Curve1
⎛
⎜
⎝

,366 ――――
50

DegPerRad

⎞
⎟
⎠

≔Curve50N2 Curve2
⎛
⎜
⎝

,366 ――――
50

DegPerRad

⎞
⎟
⎠

≔Curve65N1 Curve1
⎛
⎜
⎝

,366 ――――
65

DegPerRad

⎞
⎟
⎠

Need to tell Mathcad Prime 
the range of values for the 
range variable i in the plot:≔Curve65N2 Curve2

⎛
⎜
⎝

,366 ――――
65

DegPerRad

⎞
⎟
⎠

≔i , ‥1 2 366

-6

-4.5

-3

-1.5

0

1.5

3

4.5

6

7.5

-9

-7.5

9

70 105 140 175 210 245 280 315 3500 35 385

Curve25N1
i

Curve25N2
i

Curve50N1
i

Curve50N2
i

Curve65N1
i

Curve65N2
i i

We see that the blue dots are superimposed so closely over the red dots that we can no 
longer see the red dots in most instances. Clearly, our photoperiod rate equation is correct.
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Concluding Remarks. Analytical expressions for both the photoperiod and its diurnal rate, as 
functions of day number and geographic latitude, have been obtained.

It should also be noted that: 

a. The photoperiod rate, in minutes per day, as obtained by subtracting one day's 
photoperiod from the next day's, is very close to the analytically computed photoperiod rate.

b. The analytically computed photoperiod rate has been demonstrated to be correct, but it is
a rather complicated function of sines, cosines, tangents, and a square root.

Thus we are justified in filing away the photoperiod rate equation as an interesting 
mathematical curiosity, and in adopting the Simplified Photoperiod Equation as our preferred 
tool for studies of photoperiodism. 
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