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In this worksheet we differentially correct (DC) the orbit of an artificial Earth satellite or space 
probe using a test case specified in worksheet Gd1, or in a worksheet derived from Gd1. You 
should open worksheet Gd1, or your own worksheet derived from Gd1, and click on "Calculate 
Worksheet" from the Math menu now, if you have not already done so.

The process that we will use in this worksheet is documented in Refs. [1] and [2] for the 
differential correction of Earth orbits using radar observations. However, we will use optical 
observations in this worksheet. The batch equation of differential correction (BEDC) is:

Xo' = Xo + (ATWA)-1 ATW [ Y - F(Xo) ].

Here Xo is the initial estimate of the state vector, i.e., position and velocity, at epoch to. Xo' is 
the "improved" estimate of Xo at to, obtained by adding (ATWA)-1 ATW [ Y - F(Xo) ] to Xo.

If we let n be the number of observations, then Y is a 2n-by-1 column vector of measurements, 
since for our problem in geocentric motion the measurements are topocentric right ascension 
(RA, or a) and topocentric declination (DEC, or d). If we denote the total number of 
measurements by N, then N = 2n.

F(Xo) is thus an N-by-1column vector of "computed" measurements. What this means is that 
the RA and DEC for each observation are computed via our UPM model of two-body motion, 
by propagating the current estimate, Xo to the observation times ti for i = 1, ... , n, and by then 
computing the topocentric RA and DEC at each observation time, given the specified location 
of the observer. We say "current estimate, Xo" because we will find it necessary to iterate on the 
BEDC, testing for convergence at each iteration by means of a criterion we will define below. If 
we have convergence on a given iteration, then we stop and convert the solution to conic 
elements. But if we do not have convergence, then we replace Xo by Xo' and solve the BEDC 
again, i.e., iterate. (We could also implement an iteration counter and stop the DC if some 
maximum allowable number of iterations is reached without convergence, but that is not 
needed here because we iterate the BEDC manually by clicking on "Calculate Worksheet".)

[ Y - F(Xo) ] is the N-by-1 column vector of residuals, in the sense "observed minus computed".
The BEDC is a form of the least squares normal equations, N equations in six unknowns, which 
result when one answers the question, "what is a necessary condition that the weighted sum of 
squares of the residuals be a minimum?" The residuals are not actually Da and Dd, but rather 
cos d Da and Dd; they are the projections of DL on A and D in turn. (The cos d factor can 
become quite important when the object passes near a celestial pole, where large changes in a
accompany relatively small changes in arc length in the direction of motion.)
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A, the "A-matrix", is the N-by-6 array of partial derivatives of the N measurements with respect 
to the six components of the state vector Xo. We will compute the A-matrix from the O-matrix 
and the G-matrix, i.e., A = OG. O is the N-by-6 matrix of partials of the measurements with 
respect to the state vector at observation times ti, for i = 1, ... , n. G is Goodyear's 6-by-6 state 
transition matrix, i.e., the 6-by-6 matrix of partials of the state components at times ti with 
respect to the state components at to. G is therefore a 6-by-6 Jacobian matrix defined at each 
observation time ti for i = 1, ... , n.

W is the weight matrix. Under the assumption that the measurements are Gaussian random 
variables, and are not correlated (Danby [3] has a good discussion of this), W is a diagonal 
matrix and each diagonal entry is 1/si

2
, where si

2
is the variance of measurement i. (In Part 1, 

we specified the N-by-N identity matrix with values of  si = 1.0 radians. More realistic sigmas 
for the RA and DEC measurements, e.g., the number of radians in one arc-second, would 
improve the statistics, and yet not change the solution state vector.

Here now is an outline of the steps we will follow:

1. Retrieve the test case values from disk, as specified by worksheet Gd1, or as specified by 
your own worksheet that was derived from Gd1 by duplication and modification.

Retrieval includes obtaining the initial or current estimate of state, X, and the RMS history 
matrix. Each time you click on "Calculate Worksheet," GDC performs another iteration of 
weighted, batch least squares differential correction. At each iteration the corrected values of 
X are written to disk along with the RMS for that iteration. The corrected values of X thus 
become the current state estimate for the next iteration, and the RMS history is accumulated 
so that you can keep track of how the DC is going.

2. Define the functions needed in the DC: C, FG, GMAT, and FXA.

3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

4. Compute the residuals, DY, the A
T
WA matrix ATWA, and the A

T
WDY matrix, ATWDY.

5. Solve for and apply the corrections to state, DX. Compute the current RMS, display the 
RMS history, and test for convergence.

6. Write the corrected state vector to disk and convert to conic elements.

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.

As a preliminary, we define some constants that we will need, and set the Mathcad 
worksheet ORIGIN to 1 so that subscripts start at unity rather than at zero.

≔DegPerRad ――
180

π
≡ORIGIN 1
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≔SecPerDeg 3600.0 Earth's mean equatorial radius
in km:

≔SecPerRev ⋅SecPerDeg 360.0 ≔ae 6378.137

1. Retrieve the test case values from disk, as specified by worksheet Gd1, or as specified by 
your own worksheet that was derived from Gd1 by duplication and/or modification.

≔n READPRN ((“NOBS.prn”))
1

Number of observations.

≔t READPRN ((“TVALS.prn”)) Observation times.

≔W READPRN ((“WEIGHTS.prn”)) Measurement weights matrix.

≔R READPRN ((“RVALS.prn”)) Values of R. 

≔Y READPRN ((“YVALS.prn”)) Values of Y.

≔X READPRN ((“STATE.prn”)) State vector (corrected by Gdc).

≔RMS READPRN ((“RMS.prn”)) RMS history for state corrections by Gdc 
(one entry for each iteration).

≔N ⋅2 n Set number of measurements.

≔k 0.07436684771154 Set WGS-84 Gaussian constant for 
geocentric orbital motion. See [10].

≔μ 1 Assume that mass of secondary 
(artificial Earth satellite or space probe) 
is negligible relative to mass of primary 
(Earth).

≔K ⋅k ‾‾μ

=n 8 Display number of observations retrieved 
from disk.
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2. Define the functions needed in the DC: C, FG, GMAT, and FXA.

For path propagation one needs to calculate only c0 through c3, but for the state transition 
matrix, G, one needs c0 through c5. To keep down the length of this worksheet we define one 
version of C, the one that calculates c0 through c5. (Remember that since the ORIGIN = 1, the 
subscripts of the c-functions that we will use outside of the function C will range from 1 
through 6, rather than from 0 through 5.)

≔C ((x)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←N 0
while |

|
|
|
||

≥||x|| 0.1
‖
‖
‖
‖‖

←x ―
x

4
←N +N 1

←c5 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

42

⎛
⎜
⎝

-1 ⋅―
x

72

⎛
⎜
⎝

-1 ⋅――
x

110

⎛
⎜
⎝

-1 ⋅――
x

156

⎛
⎜
⎝

-1 ⋅――
x

210

⎛
⎜
⎝

-1 ――
x

272

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

120

←c4 ―――――――――――――――――――

⎛
⎜
⎝

-1 ⋅―
x

30

⎛
⎜
⎝

-1 ⋅―
x

56

⎛
⎜
⎝

-1 ⋅――
x

090

⎛
⎜
⎝

-1 ⋅――
x

132

⎛
⎜
⎝

-1 ⋅――
x

182

⎛
⎜
⎝

-1 ――
x

240

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

⎞
⎟
⎠

24

←c3 -―
1

6
⋅c5 x

←c2 -―
1

2
⋅c4 x

←c1 -1 ⋅c3 x

←c0 -1 ⋅c2 x

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

>N 0
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←N -N 1

←c5 ―――――
⎛⎝ ++⋅c2 c3 c4 c5⎞⎠

16

←c4 ―――――
⎛⎝ ++⋅c2 c2 c4 c4⎞⎠

8

←c3 ――――
⎛⎝ +⋅c1 c2 c3⎞⎠

4

←c2 ――
⋅c1 c1
2

←c1 ⋅c1 c0
←c0 -⋅⋅2 c0 c0 1

T
c0 c1 c2 c3 c4 c5⎡⎣ ⎤⎦
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Function UKEP solves the uniform Kepler equation for function FG. FG, in turn, propagates 
position and velocity for function FXA.

≔UKEP ⎛⎝ ,,,τ rmago σo α⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←s ――
τ

rmago
←Δs s

while |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

≥||Δs|| 0.00000001
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←c C ⎛⎝ ⋅α s2 ⎞⎠
←F -++⋅⋅rmago s c

2
⋅⋅σo s2 c

3
⋅s3 c

4
τ

←DF ++⋅rmago c
1

⋅⋅σo s c
2

⋅s2 c
3

←DDF +⋅σo c
1

⋅⋅⎛⎝ -1 ⋅rmago α⎞⎠ s c
2

|
|
|
|
|
|

if

else

≥DF 0
‖
‖ ←m 1

‖
‖ ←m -1

←Δs ―――――――――――
⋅-5 F

⎛
⎝ +DF ⋅m ‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾|| -(( ⋅4 DF))2 ⋅⋅20 F DDF||

⎞
⎠

←s +s Δs

s

≔FG ⎛⎝ ,,,K ro vo Δt⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

←τ ⋅K Δt

←rmago ‾‾‾‾⋅ro ro
←σo ⋅ro vo

←α -――
2

rmago
⋅vo vo

←s UKEP ⎛⎝ ,,,τ rmago σo α⎞⎠
←c C ⎛⎝ ⋅α s2 ⎞⎠
←fr -1 ⋅⋅s2 c

3
rmago

-1

←gr -τ ⋅s3 c
4

←rmag ++⋅rmago c
1

⋅⋅σo s c
2

⋅s2 c
3

←fv ⋅⋅-s c
2
⎛⎝ ⋅rmag rmago⎞⎠

-1

←gv -1 ⋅⋅s2 c
3
rmag-1

K α rmago fr fv
τ s rmag gr gv

⎡
⎢
⎣

⎤
⎥
⎦
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Function GMAT provides the state transition matrix for function FXA.

The state transition matrix formulation that we use below is based upon the seminal works of 
Goodyear [4], [5]. See also Shepperd [6], Battin [7], and Der [8] for more recent expositions.

Before defining GMAT, we define functions S11, S12, S21, and S22 just to make GMAT fit 
horizontally and vertically within the margins of a single Mathcad page.

≔S11 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠
-―――――

+⋅fv s
2

――
-fr 1

rmago
rmago

⋅-fv s
3

――――
⋅⎛⎝ -fr 1⎞⎠ s

2

rmago
⋅⎛⎝ -fr 1⎞⎠ s

3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔S12 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠
⋅-fv s

3
⋅-⎛⎝ -gv 1⎞⎠ s

3

⋅⎛⎝ -fr 1⎞⎠ s
3

⋅gr s
3

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔S21 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠

⋅-fv

⎛
⎜
⎜
⎝

++――――
s
1

⋅rmago rmag
―――

1

rmag2
―――

1

rmago
2

⎞
⎟
⎟
⎠

-―――――

+⋅fv s
2

――
-gv 1

rmag

rmag

―――――

+⋅fv s
2

―――
⎛⎝ -fr 1⎞⎠
rmago

rmago
⋅fv s

3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔S22 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv s⎞⎠ -―――――

+⋅fv s
2

――
-gv 1

rmag

rmag
――――

⋅-⎛⎝ -gv 1⎞⎠ s
2

rmag
⋅fv s

3
⋅⎛⎝ -gv 1⎞⎠ s

3

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

(Note that because ORIGIN = 1, the subscripts of the c-functions and Goodyear's s-functions 
range from 1 to 6 rather than from 0 to 5. It is especially important to note this difference 
when checking the GMAT formulas against Goodyear's original works.) 
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≔GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←fv M
,1 5

←gv M
,2 5

←c C ⎛⎝ ⋅α s2 ⎞⎠

←svec
T

c
1

⋅s c
2

⋅s2 c
3

⋅s3 c
4

⋅s4 c
5

⋅s5 c
6

⎡
⎢⎣

⎤
⎥⎦

←U -+⋅svec
3
τ ⋅s svec

5
⋅3 svec

6

←A augment (( ,r v))

←B
T

augment ⎛⎝ ,ro vo⎞⎠

←ao ―――
-ro

rmago
3

←a ―――
-r

rmag3

←I identity ((3))
←G11 ++⋅fr I ⋅⋅U v Tao ⋅⋅A S11 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G12 +-⋅gr I ⋅⋅U v Tvo ⋅⋅A S12 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G21 ++⋅fv I ⋅⋅U a Tao ⋅⋅A S21 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

←G22 +-⋅gv I ⋅⋅U a Tvo ⋅⋅A S22 ⎛⎝ ,,,,,,rmago rmag fr gr fv gv svec⎞⎠ B

stack ⎛⎝ ,augment ⎛⎝ ,G11 G12⎞⎠ augment ⎛⎝ ,G21 G22⎞⎠⎞⎠

Function FXA calculates FX, the N-by-1 computed measurements vector, and A, the N-by-6 A-
matrix of partials of the measurements at time ti with respect to the state at time to. (Note 
that in the call to function FG, the time since epoch is converted from days to minutes by 
multiplying by 1440 minutes per day.)
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≔FXA ⎛⎝ ,,K ro vo⎞⎠
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

i ‥1 n
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

←M FG ⎛
⎝

,,,K ro vo ⋅⎛
⎝

-t
i

t
1
⎞
⎠

1440⎞
⎠

←τ M
,2 1

←α M
,1 2

←s M
,2 2

←rmago M
,1 3

←rmag M
,2 3

←fr M
,1 4

←gr M
,2 4

←r +⋅fr ro ⋅gr vo
←v +⋅M

,1 5
ro ⋅M

,2 5
vo

←ρ +r ((R))⟨⟨i⟩⟩

←ρmag ‾‾‾⋅ρ ρ
←j -⋅2 i 1
←k +j 1
←RA angle ⎛

⎝
,ρ

1
ρ
2
⎞
⎠

←DEC asin

⎛
⎜
⎜⎝
――
ρ
3

ρmag

⎞
⎟
⎟⎠

←FX
j

⋅cos ⎛
⎝
Y
k
⎞
⎠

RA

←FX
k

DEC

←d
j

ρmag

←d
k

ρmag

←O
―――
-sin ((RA))
ρmag

―――
cos ((RA))
ρmag

0 0 0 0

―――――――
⋅-sin ((DEC)) cos ((RA))

ρmag
―――――――

⋅-sin ((DEC)) sin ((RA))
ρmag

――――
cos ((DEC))

ρmag
0 0 0

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

←G GMAT ⎛⎝ ,,,,M ro vo r v⎞⎠
|
|
|
|
|
|

if

else

＝i 1
‖
‖ ←A ⋅O G

‖
‖ ←A stack (( ,A ⋅O G))

←A augment (( ,FX A))
augment (( ,d A))
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3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

≔ro

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

≔vo ⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

―
1

K

≔M FXA ⎛⎝ ,,K ro vo⎞⎠

≔FX M
⟨⟨2⟩⟩ ≔A submatrix (( ,,,,M 1 N 3 8))

Extract topocentric distance values for 
information about computed ranges for 
each of the observations.

≔d M
⟨⟨1⟩⟩

(Click on the FX column vector and
scroll down to see all N entries.)

(Click on the A matrix and scroll down to see all 
N rows. Scroll right to see all 6 columns.)

=FX

0.43778172
0.22941533
0.43743911
0.22938841
0.43726068
0.22937247
0.46236678
0.23881693
0.46295879
0.23929609
0.46332058
0.23958793
0.4635863
0.23980218
0.46439392
0.24045154

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=A

-0.01191692 0.02469761 0
-0.00561644 -0.00271 0.02670387

-0.01234743 0.02561302 ⋅2.59097475 10-10

-0.00582394 -0.00280758 0.02768908

-0.01257441 0.02609623 ⋅6.34769613 10-10

-0.0059334 -0.002859 0.02820904
-0.02171189 0.04212544 -0.00000032
-0.00996494 -0.00513569 0.04604651
-0.02271482 0.04399883 -0.0000004
-0.01042861 -0.00538344 0.04810529
-0.02333093 0.04514687 -0.00000045
-0.01071354 -0.00553604 0.0493674
-0.02378565 0.04599281 -0.00000049
-0.01092388 -0.00564886 0.05029763
-0.02517573 0.04857167 -0.00000063
-0.0115671 -0.00599479 0.05313458 …

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

4. Compute the residuals, DY, the A
T
WA matrix ATWA, and the A

T
WDY matrix, ATWDY.Gdc - 2024 UQ MP10.mcdx Page 9 of 17



4. Compute the residuals, DY, the A
T
WA matrix ATWA, and the A

T
WDY matrix, ATWDY.

≔ΔY -Y FX ≔ATWA ⋅⋅TA W A ≔ATWΔY ⋅⋅TA W ΔY

Topocentric 
distance
values.

=ΔY

-0.00000129
-0.00000155
0.00000254
0.00000235

-0.0000015
⋅4.80272694 10-9

-0.00000093
-0.00000372
0.00000241
0.0000013
0.00000046

-0.00000028
-0.00000021
0.00000063

-0.00000148
0.00000126

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=d

36.46661089
36.46661089
35.16922241
35.16922241
34.52099406
34.52099406
21.08943369
21.08943369
20.18266305
20.18266305
19.66414892
19.66414892
19.29863011
19.29863011
18.2628761
18.2628761

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Display ATWA and ATWDY matrices.

=ATWA

0.00386 -0.005877 -0.003132 0.021158 -0.031922 -0.016989
-0.005877 0.012347 -0.001602 -0.03192 0.066475 -0.008775
-0.003132 -0.001602 0.0145 -0.016989 -0.008775 0.078292
0.021158 -0.03192 -0.016989 0.132939 -0.200411 -0.10666

-0.031922 0.066475 -0.008775 -0.200411 0.41705 -0.055135
-0.016989 -0.008775 0.078292 -0.10666 -0.055135 0.491303

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

=ATWΔY

- ⋅6.59916686 10-17

⋅8.97359939 10-18

⋅2.71849851 10-16

- ⋅1.87218567 10-16

- ⋅1.3165537 10-15

⋅3.80787018 10-15

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦
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5. Solve for and apply the corrections to state, DX. Compute the current RMS error, display 
the RMS error history, and test for convergence. See [9], Chapter 15 for documentation of 
the WRMS and PWRMS convergence criteria below.

≔ΔX ⋅ATWA-1 ATWΔY =ΔX

⋅6.1724988 10-10

⋅2.92281652 10-10

⋅1.57147659 10-10

⋅2.46884139 10-10

⋅1.31843432 10-10

⋅6.99234614 10-11

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔X +stack ⎛⎝ ,ro vo⎞⎠ ΔX

≔WSS ∑
=i 1

N

⎛
⎝

⋅W
,i i

ΔY
i
⎞
⎠
2 Weighted sum of squares 

of residuals.

=WSS ⋅4.49952222 10-11

Weighted RMS in km.
≔WRMS ⋅

‾‾‾‾
――
WSS

N
ae

=WRMS 0.01069589

Predicted weighted sum of 
squares of residuals for next 
iteration, in km.

≔PWSS ∑
=i 1

6

⎛
⎝

⋅ATWΔY
i
ΔX

i
⎞
⎠

=PWSS ⋅5.10692472 10-26

Predicted weighted RMS for 
next iteration, in km.≔PWRMS ⋅

‾‾‾‾‾‾‾‾‾‾‾
―――――
|| -WSS PWSS||

N
ae

=PWRMS 0.01069589
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≔Converged ‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
||

|
|
|
|
|
|

if

else

<|| -WRMS PWRMS|| ⋅0.001 WRMS
‖
‖ 1

‖
‖ 0

=Converged 1

=APPENDPRN (( ,“RMS.prn” WRMS Converged[[ ]]))

0 0
0.01969325 0
0.0106959 1
0.01069589 1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

≔RMS READPRN ((“RMS.prn”))

RMS History:

Number of iterations:

≔Iterations -rows ((RMS)) 1 =RMS

0 0
0.02 0
0.011 1
0.011 1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

=Iterations 3

6. Write the corrected state vector to disk and convert to conic elements.

=WRITEPRN

⎛
⎜
⎜
⎜
⎜
⎝

,“STATE.prn” stack

⎛
⎜
⎜
⎜
⎜
⎝

,

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

K

⎞
⎟
⎟
⎟
⎟
⎠

⎞
⎟
⎟
⎟
⎟
⎠

32.64663276
15.95530778
8.82601938

-0.17401969
-0.08201306
-0.04487175

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
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Compute and display the conic elements by calling function PVCO to transform position and 
velocity to conic elements.

≔r1

X
1

X
2

X
3

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

≔v1 ⋅

X
4

X
5

X
6

⎡
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎦

K =―
v1
K

-2.34001702
-1.10281747
-0.60338379

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

PVCO needs position in 
E.R. But here is position 
in units of km:

PVCO needs velocity in 
E.R./min. But here is 
velocity in units of km/sec:

=⋅r1 ae

208224.69631
101765.138913
56293.560761

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

=⋅v1 ―
ae
60

-18.49869036
-8.71817543
-4.76996949

⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦

≔rmag1 ‾‾‾‾⋅r1 r1 =rmag1 37.39349001 E.R.

PVCO also invokes function SCAL1, which we define now.

≔SCAL1 (( ,,,,K α q e υ)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

if

else

>α 0
‖
‖
‖
‖
‖
‖
‖

←E -υ ⋅2 atan
⎛
⎜
⎜⎝
―――――――

⋅e sin ((υ))

++1 ‾‾‾‾‾-1 e2 ⋅e cos ((υ))

⎞
⎟
⎟⎠

←s ――
E

‾‾α

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|

←w ⋅⋅―
1

K

‾‾‾‾‾
――
q

+1 e
tan

⎛
⎜
⎝
―
υ

2

⎞
⎟
⎠

|
|
|
|
|
|
|
|
|
||

if

else

＝α 0
‖
‖ ←s ⋅2 w

‖
‖
‖
‖
‖
‖‖

‖
‖
‖
‖
‖‖

|
|
|
|
||

←E ⋅2 atanh ⎛⎝ ⋅‾‾‾-α w⎞⎠

←s ――
E

‾‾‾-α

s
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Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors 
range from 1 through 3 rather than from 0 through 2. Also, the subscripts of c range from 1
through 4 rather than from 0 through 3.)

≔PVCO (( ,,K r v))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←rmag ‾‾‾⋅r r
←h ⨯r v

←hmag ‾‾‾⋅h h

←W ――
h

hmag

←E -――
⋅v v

2
――
K2

rmag
←α ⋅-2 E

←p ―――
hmag2

K2

←e ‾‾‾‾‾‾‾‾‾‾‾-1.0 ⋅⋅α p K-2

←q ――
p

+1 e

←U ――
r

rmag
←V ⨯W U

←υ angle
⎛
⎜
⎝

,-⋅⋅――
hmag

K2
v V 1.0 ⋅⋅――

hmag

K2
v U

⎞
⎟
⎠

←P -⋅cos ((υ)) U ⋅sin ((υ)) V
←Q +⋅sin ((υ)) U ⋅cos ((υ)) V
←i acos ⎛

⎝
W

3
⎞
⎠

←Ω angle ⎛
⎝

,-W
2
W

1
⎞
⎠

←ω angle ⎛
⎝

,Q
3
P

3
⎞
⎠

←s SCAL1 (( ,,,,K α q e υ))
←c C ⎛⎝ ⋅α s2 ⎞⎠
←Δt +⋅q s ⋅⋅⋅K2 e s3 c

4

q
e

⋅i DegPerRad
⋅Ω DegPerRad
⋅ω DegPerRad

Δt

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦
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We now invoke PVCO and place its output into array CONIC.

≔CONIC PVCO ⎛⎝ ,,K r1 v1⎞⎠

=CONIC

0.49411352
4.46001649

35.78644264
6.35496413

125.81289484
-187.25342707

⎡
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥⎦

We should note that the position vector input to PVCO must have units of E.R. and the velocity 
vector must have units of E.R. per minute. We summarize the weighted batch least squares 
orbital solution as follows.

=⋅⎛
⎝

-CONIC
1

1⎞
⎠
ae -3226.61327 Perigee height in km, relative to spherical 

Earth figure.

=CONIC
2

4.46001649 Path eccentricity.

=CONIC
3

35.78644 Path inclination, in degrees.

=CONIC
4

6.35496 Right ascension of ascending node, in 
degrees.

=CONIC
5

125.81289 Argument of perigee, in degrees.

=CONIC
6

-187.25343 Time of flight from perigee to epoch, in 
minutes.

First five quantities agree well with Visual Studio C++ batch DC program bd4c_mpc.exe, 
except for the last quantity. But bd4c_mpc.exe places epoch at last observation, whereas 
this GDC worksheet places epoch at first observation.

Time difference between first and last observation is 0.063751 days, i.e., 91.80144 
minutes*. Adding this quantity to -187.25343, we get -95.45199 minutes, so "minutes to 
perigee," i.e., "time of flight from epoch to perigee" is 95.45199 minutes, which agrees well 
with the bd4c_mpc.exe batch DC result in output file bdc_sum.txt.

*See bd4c_mpc_2010.exe input file mpc_obs.txt, or Gd1 worksheet input file 2024 UQ 
Obs.txt.
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First five quantities agree well with Visual Studio C++ batch DC program bd4c_mpc.exe, 
except for the last quantity. But bd4c_mpc.exe places epoch at last observation, whereas 
this GDC worksheet places epoch at first observation.

Time difference between first and last observation is 0.063751 days, i.e., 91.80144 
minutes*. Adding this quantity to -187.25343, we get -95.45199 minutes, so "minutes to 
perigee," i.e., "time of flight from epoch to perigee" is 95.45199 minutes, which agrees well 
with the bd4c_mpc.exe batch DC result in output file bdc_sum.txt.

*See bd4c_mpc_2010.exe input file mpc_obs.txt, or Gd1 worksheet input file 2024 UQ 
Obs.txt.

We have the height of perigee above a spherical Earth figure, but for a closest approach 
determination, it would be more accurate to have the actual height of the object above its 
subpoint on a oblate spheroidal Earth at the instant of perigee. We calculate this now.

≔f ―――
1

298.26
Earth's polar vs. equatorial flattening factor.

Eccentricity of Earth's meridional 
reference ellipse.≔ee

‾‾‾‾‾‾-⋅2 f f2

We define function GRT, which inputs space object's position vector and outputs the geodetic 
latitude of the subsatellite point (subpoint), and the object's height above the subpoint.

≔GRT ((r))
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||

←rmag ‾‾‾⋅r r

←δ asin

⎛
⎜
⎜⎝
――
r
3

rmag

⎞
⎟
⎟⎠

←ϕc δ

for ∊ |
|
|
|
|
|
|
|
|
|
|
|
||

j ‥1 4
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

←rs ――――――
‾‾‾‾‾-1 ee

2

‾‾‾‾‾‾‾‾‾‾‾‾‾-1 ⎛⎝ ⋅ee cos ⎛⎝ϕc⎞⎠⎞⎠
2

←ϕs atan
⎛
⎜
⎜⎝
―――
tan ⎛⎝ϕc⎞⎠

-1 ee
2

⎞
⎟
⎟⎠

←Hs -‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾-rmag2 ⎛⎝ ⋅rs sin ⎛⎝ -ϕs ϕc⎞⎠⎞⎠
2 ⋅rs cos ⎛⎝ -ϕs ϕc⎞⎠

←ϕc -δ asin
⎛
⎜
⎝
―――――

⋅Hs sin ⎛⎝ -ϕs ϕc⎞⎠
rmag

⎞
⎟
⎠

ϕs
Hs

⎡
⎢
⎣

⎤
⎥
⎦

≔Δt -CONIC
6

≔M FG
⎛
⎜
⎝

,,,K r1 ―
v1
K

Δt
⎞
⎟
⎠

≔fr M
,1 4

≔gr M
,2 4

≔r +⋅fr r1 ⋅gr ―
v1
K

≔LatHt GRT ((r))

Geodetic latitude, fs, and height above spheroid, Hs, at time of perigee passage:

=⋅LatHt
1
DegPerRad 28.63437 (degrees)

=⋅LatHt
2
ae -3221.75991 (km)

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.
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