BATCH LEAST SQUARES DIFFERENTIAL CORRECTION
OF A GEOCENTRIC ORBIT

PART 2 - MANUAL CORRECTION WORKSHEET

Roger L. Mansfield, June 1, 2025
http://astroger.com/

In this worksheet we differentially correct (DC) the orbit of an artificial Earth satellite or space
probe using a test case specified in worksheet Gd1, or in a worksheet derived from Gd1. You
should open worksheet Gd1, or your own worksheet derived from Gd1, and click on "Calculate
Worksheet" from the Math menu now, if you have not already done so.

The process that we will use in this worksheet is documented in Refs. [1] and [2] for the
differential correction of Earth orbits using radar observations. However, we will use optical
observations in this worksheet. The batch equation of differential correction (BEDC) is:

X, =X, + (A'WAY AW Y - F(X) 1.

Here X, is the initial estimate of the state vector, i.e., position and velocity, at epoch t,. X, is
the "improved" estimate of X, at t,, obtained by adding (ATWA)'1 A'W [Y-FX,)] to Xo.

If we let n be the number of observations, then Y is a 2n-by-1 column vector of measurements,
since for our problem in geocentric motion the measurements are topocentric right ascension
(RA, or a) and topocentric declination (DEC, or 8). If we denote the total number of
measurements by N, then N = 2n.

F(Xo) is thus an N-by-1column vector of "computed" measurements. What this means is that
the RA and DEC for each observation are computed via our UPM model of two-body motion,
by propagating the current estimate, X, to the observation times t; fori = 1, ..., n, and by then
computing the topocentric RA and DEC at each observation time, given the specified location
of the observer. We say "current estimate, X," because we will find it necessary to iterate on the
BEDC, testing for convergence at each iteration by means of a criterion we will define below. If
we have convergence on a given iteration, then we stop and convert the solution to conic
elements. But if we do not have convergence, then we replace X, by X,' and solve the BEDC
again, i.e,, iterate. (We could also implement an iteration counter and stop the DC if some
maximum allowable number of iterations is reached without convergence, but that is not
needed here because we iterate the BEDC manually by clicking on "Calculate Worksheet".)

[Y - F(Xo) ] is the N-by-1 column vector of residuals, in the sense "observed minus computed".
The BEDC is a form of the least squares normal equations, N equations in six unknowns, which
result when one answers the question, "what is a necessary condition that the weighted sum of
squares of the residuals be a minimum?" The residuals are not actually Ao and A8, but rather
cos & Aa and Ag; they are the projections of AL on A and D in turn. (The cos & factor can
become quite important when the object passes near a celestial pole, where large changes in a
accompany relatively small changes in arc length in the direction of motion.)
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A, the "A-matrix", is the N-by-6 array of partial derivatives of the N measurements with respect
to the six components of the state vector X,. We will compute the A-matrix from the O-matrix
and the G-matrix, i.e, A = OG. O is the N-by-6 matrix of partials of the measurements with
respect to the state vector at observation times t;, fori =1, .., n. Gis Goodyear's 6-by-6 state
transition matrix, i.e., the 6-by-6 matrix of partials of the state components at times t; with
respect to the state components at t,. G is therefore a 6-by-6 Jacobian matrix defined at each
observation time t; fori =1, .., n.

W is the weight matrix. Under the assumption that the measurements are Gaussian random
variables, and are not correlated (Danby [3] has a good discussion of this), W is a diagonal

matrix and each diagonal entry is 1/Gi2, where ciz is the variance of measurementi. (In Part 1,
we specified the N-by-N identity matrix with values of ;= 1.0 radians. More realistic sigmas
for the RA and DEC measurements, e.g., the number of radians in one arc-second, would
improve the statistics, and yet not change the solution state vector.)

Here now is an outline of the steps we will follow:

1. Retrieve the test case values from disk, as specified by worksheet Gd1, or as specified by
your own worksheet that was derived from Gd1 by duplication and modification.

Retrieval includes obtaining the initial or current estimate of state, X, and the RMS history
matrix. Each time you click on "Calculate Worksheet," GDC performs another iteration of
weighted, batch least squares differential correction. At each iteration the corrected values of
X are written to disk along with the RMS for that iteration. The corrected values of X thus
become the current state estimate for the next iteration, and the RMS history is accumulated
so that you can keep track of how the DC is going.

2. Define the functions needed in the DC: C, FG, GMAT, and FXA.

3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

4. Compute the residuals, AY, the A'WA matrix ATWA, and the A'WAY matrix, ATWAY.

5. Solve for and apply the corrections to state, AX. Compute the current RMS, display the
RMS history, and test for convergence.

6. Write the corrected state vector to disk and convert to conic elements.

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.

As a preliminary, we define some constants that we will need, and set the Mathcad
worksheet ORIGIN to 1 so that subscripts start at unity rather than at zero.

DegPerRad := 180 ORIGIN=1

T
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SecPerDeg :=3600.0

SecPerRev := SecPerDeg « 360.0

Earth's mean equatorial radius
in km:

a,:=6378.137

1. Retrieve the test case values from disk, as specified by worksheet Gd1, or as specified by
your own worksheet that was derived from Gd1 by duplication and/or modification.

n:= READPRN (“NOBS.pm”)

t:= READPRN (“TVALS.prn”)

W :=READPRN (“WEIGHTS.prn”)
R:=READPRN (“RVALS.prn”)
Y:=READPRN (“YVALS.pr”)
X:=READPRN (“STATE.prn”)

RMS:= READPRN (“RMS.prn”)

N:=2.n

k:=0.07436684771154
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Number of observations.

Observation times.

Measurement weights matrix.

Values of R.

Values of Y.

State vector (corrected by Gdc).

RMS history for state corrections by Gdc
(one entry for each iteration).

Set number of measurements.

Set WGS-84 Gaussian constant for
geocentric orbital motion. See [10].

Assume that mass of secondary
(artificial Earth satellite or space probe)
is negligible relative to mass of primary
(Earth).

Display number of observations retrieved
from disk.
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2. Define the functions needed in the DC: C, FG, GMAT, and FXA.

For path propagation one needs to calculate only ¢y through cs, but for the state transition
matrix, G, one needs ¢y through cs. To keep down the length of this worksheet we define one
version of C, the one that calculates ¢y through cs. (Remember that since the ORIGIN = 1, the
subscripts of the c-functions that we will use outside of the function C will range from 1

through 6, rather than from 0 through 5.)

C(x)=||N<0
while |x|>0.1

X——

i

]

C3(_—_Cj'x
6

1
CZ(_—_C4'X
2

cj—1l—cjz-x
cop—1l—cyex
while N>0

N—N-1

Ce
’ 16

Cy—
8
<cjocg+c3>
4
¢

C3—

Cy <

Ci«=C;*Cy

Cop+—2-cpecp—1

[C() C; €y C3 Cy4 C5]
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(cz-c3+c4+c5>

(cz-cz+c4+c4)

T
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Function UKEP solves the uniform Kepler equation for function FG. FG, in turn, propagates
position and velocity for function FXA.

UKEP(T,rmagu,ao,a) =Y |y —

rmag,

As s
while |s| >0.00000001

c<—C<a-s2>

2 3
F—rmag,+s+c +0,°s" «c +s «c —71
2 3 4
2
DF «—rmag,+c +0,°s+c +5" +C
1 2 3

DDF«—ao-cl—f-<1—rmago-a>-s-c2

if DF>0
Hm<—1
else
Hm<——1
—5F

As +—

(pF+m-\](4-DF)* —20-F-DDF|)
s <«—8+A4s

FG (K, ry,v,,dt) =t K- 4t
rmag, «— \/ro o7,
O, T, V,
2
rmag,
s < UKEP (r, rmag, , o, , a>
Cc— C<a-s2>

2 I
fie—1—s s +rmag,

o <—

3
g 15 ec,

2
rmag < rmag, - ¢, +00-s-cz+s -c3
-1
fo— —sec . <rmag-rmag0>
2 -1
g,—1—s sc crmag

K o rmag, f. f,
T s rmag g, 8,
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Function GMAT provides the state transition matrix for function FXA.

The state transition matrix formulation that we use below is based upon the seminal works of
Goodyear [4], [5]. See also Shepperd [6], Battin [7], and Der [8] for more recent expositions.

Before defining GMAT, we define functions Sq1, S12, Sz1, and Sy, just to make GMAT fit
horizontally and vertically within the margins of a single Mathcad page.

—1
foes + 2
2 rmag,
us —f, s
S”<rmago,rmag,fr,gr,fv,gv,s>:: rmag,
<f,—l)-s
(1)
rmag, 3
—f,es —<gv—l) R
512(rmago,rmag,/’r,g,,ﬁ,gv,s> =
<fr—l>-s 85,
g,—1
g 1 1 RN
rma
e s ;T S 2
rmag, - rmag rmag rmag, rmag
SZ](rmagoarmagvﬁvgraﬁmgw‘g):: P <f_1> Y
foes, ==
2 rmag,
fies,
rmag,
8
frspm (g 1) s
rmag 2
SZ2(rmagoarmagvﬁvgraﬁmgw‘g):: + rmag rmag
fvos3 <gv—1)°s3

(Note that because ORIGIN = 1, the subscripts of the c-functions and Goodyear's s-functions
range from 1 to 6 rather than from 0 to 5. It is especially important to note this difference
when checking the GMAT formulas against Goodyear's original works.)
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GMAT(Mr v, r v):: T—M

2707 "0 9
2,1

a—M
1,2

s—M

2,2

rmag, < M1 ,
;

rmatg«—ML3
fr(_Ml.A

g—M

2,4

fre=M

1,5

g =M

2,5

c<—C<a-s2>

svec<—|Cc S-cC S2'C S3'C S ¢C S °C
1 2 3 4 5 6

U« SV€C3 *T+S 'SV@CS -3 'SV€C6

A «— augment (7, v)
T
B« augment (ra , v0>
_ro

a, <

3
rmag,

—r
a«—

rmag’
I+ identity (3)
Gy —fIl+Usvea," +4-8, <rmago,rmag,ﬁ,g,,fv,gv,sva’) B
Gpy—g I—Usvev,"+4.5), (rmag,,rmag .f, g, .f,,8,,svec) - B
Gy —f,o I+ U-a-a,” +4:S,, <rmago,rmag,f,,gr,fv,gv,svec> B
Gye—g, I—U-sa-v," +4-5,, (rmago,rmag,fr,g,,fv,gv,svec) B
stack (augment <G1, , G12> ,augment <G21 A G22>>

Function FXA calculates FX, the N-by-1 computed measurements vector, and A, the N-by-6 A-
matrix of partials of the measurements at time t; with respect to the state at time t,. (Note

that in the call to function FG, the time since epoch is converted from days to minutes by
multiplying by 1440 minutes per day.)
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FXA (K,ro,v0> i=|foriel..n

MHFG(K,rO,vn,(p—ﬂ)-1440)

T—M
2,1

a—M
1,2

s—M
2,2

rmag, «— Ml -

rmag «— M
2,3
1,4

&M, ,

r(_f;'ro-i-gr'vo
ve—M r,+M v
1,5 2,5

p—r+(R)"

pmag<—\Np-p

Jje—2-i—1

k—j+1

RA — angle <pl , pz)
Py

DEC «+ asin
pmag
FX « cos (Yk) -RA
J

FXk «— DEC
d — pmag

J

dk «— pmag

—sin (RA) cos (RA)
0 pmag pmag
—sin (DEC) +cos (R4) —sin(DEC)-sin(R4) cos(DEC)
pmag pmag pmag
G«—GMAT(M,rO,vo,r,v)
ifi=1
H A—0-G
else
|4 stack (4,0-6)
A« augment (FX, 4)
augment (d, A)

0 000

000
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3. Obtain the computed measurements, FX, and the A-matrix, A, by invoking FXA.

X X

1 4
ryi= X V= X .1

2 S K

X X

3 6
M:=FXA(K,r,,v,)
FX:=M? A :=submatrix (M, 1,N,3, 8)

Extract topocentric distance values for
information about computed ranges for
each of the observations.

d:=M"
(Click on the FX column vector and (Click on the A matrix and scroll down to see all
scroll down to see all N entries.) N rows. Scroll right to see all 6 columns.)

| - —0.01191513  0.02469393 0
0.43778136
91414 —0.00561557 —0.00270958  0.02669989 T
043743500 —0.01234507  0.02560813  2.55402649 10
022938891 —0.00582284 —0.00280705  0.02768378
0.43726083 —0.01257174  0.02609066  6.26034148 107"
0.22937388 —0.00593217 —0.00285841  0.02820301
0.46236731 —0.02168865  0.04208028 —0.00000032
Fy— | 023881509 (= | —0.00995418 —0.00513015  0.04599719
0.46295914 —0.02268842  0.04394764 —0.0000004
0.23929535 —0.01041645 —0.00537717  0.04804936
0.46332073 —0.0233025  0.04509182 —0.00000045
0.23958783 —0.01070047 —0.00552929  0.04930722
0.46358627 —0.02375567  0.04593484 —0.00000049
0.23980253 —0.01091013 —0.00564175  0.05023422
8"2‘%22;2 —0.02514079  0.04850433 —0.00000063
Y- ] | —0.01155114 —0.0059865  0.05306088
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4. Compute the residuals, AY, the A'WA matrix ATWA, and the A'WAY matrix, ATWAY.

AY:=Y—FX ATWA:=AT W4
[ —0.00000094 |
—0.00000035
0.00000256
0.00000185
—0.00000165
—0.0000014
—0.00000146 Topocentric
AY = —0.00000188 distance d=
0.00000206 values.
0.00000204
0.0000003 1
—0.00000018
—0.00000018
0.00000028
—0.0000007
| —0.00000036 |
Display ATWA and ATWAY matrices.
0.003852 —0.005864 —0.003125 0.021106 —0.031844
—0.005864  0.012321 —0.001599 —0.031842  0.066313
ATwA = | —0:003125 —0.001599  0.014469 —0.016948 —0.008754
0.021106 —0.031842 —0.016948 0.132609 —0.199914
—0.031844  0.066313 —0.008754 —0.199914 0.416016
| —0.016948 —0.008753  0.078101 —0.106396 —0.054998
—1.55885306+107"°
1.99344369 107"
—16
ATWAY—| 19341295610

—9.5183956.107"¢
1.20839775-107"

| 1.19375133.107" |
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ATWAY := AT e W AY

[36.47205446 |

36.47205446
35.17594339
35.17594339
34.52835368
34.52835368
21.11207055
21.11207055
20.20618099
20.20618099
19.68817086
19.68817086
19.32300742
19.32300742
18.28826091

| 18.28826091

—0.016948 |
—0.008753
0.078101
—0.106396
—0.054998
0.490084 |
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5. Solve for and apply the corrections to state, AX. Compute the current RMS error, display
the RMS error history, and test for convergence. See [9], Chapter 15 for documentation of
the WRMS and PWRMS convergence criteria below.

[ —2.06673348+107"]
—1.01203774 107"
—5.43440671+107"

1.40692529 107"
7.21698659.107"
| 3.85922305-107" |

AX:= ATWA™" « ATWAY AX =

X:=stack (r Y ) +4X

0?70

N
WSS:= (W ,-AY.)Z Weighted sum of squares
T of residuals.

i=1

WSS =3.05472442 .10~ "

wrMS:=4| P55 L4, Weighted RMS in km.
N

WRMS =0.00881292

6
PWSS:= ), (ATWAY.-AX)

i=1

Predicted weighted sum of
squares of residuals for next
iteration, in km.

PWSS =8.94803327.10°

| |wss—pwss| Predicted weighted RMS for
FWRAMS = N *de next iteration, in km.

PWRMS =0.00881292
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Converged := ifH|WRMS—PWRMS| <0.001 - WRMS
1

else

o

Converged=1

0 0
0.55877803 0
APPENDPRN (“RMS.prn”, [ WRMS Converged]) = | 0.00882013 1
0.00881292 1
0.00881292 1

RMS = READPRN (“RMS.prn”)

RMS History:

Number of iterations:
0 0
0.559 0
Iterations :=rows (RMS) — 1 RMS={0.009 1
0.009 1

0.009 1
Iterations =4

6. Write the corrected state vector to disk and convert to conic elements.

[ 32.65310584 ]
x1 [, 15.95545981
) . | 8.82721479
WRITEPRN | “STATE.prn”, stack | |.X || X |-K|f=| "2 0
vl lx —0.08192313

7 o | —0.04481867 |
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Compute and display the conic elements by calling function PVCO to transform position and
velocity to conic elements.

X X
I 4 L [2:33764262
ri=| X vi=|X |- K L] -1.10160821
1 2 1 5 K
—0.60267008
X3 X6

PVCO needs position in PVCO needs velocity in
E.R. But here is position E.R./min. But here is
in units of km: velocity in units of km/sec:
208265.982516 —18.47991985
r;ea,=|101766.108587 v e—=| —8.7086158
56301.18527 60 | —4.76432736

rmagl:=\/r;-r, rmagl =37.3994885  E.R.

PVCO also invokes function SCAL1, which we define now.

SCALI (K ,a,q,e,v)=lif a>0
E<—v—2-atan( e-sin(v) )

1+V1—e’ +e-cos(v)

§e——
Va

else

W — ! . q -tan(g)

K 1+e 2

if a=0

Hs<—2~w

else
E<—2-atanh<\/—_a-w>
s
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Finally, now, we define function PVCO.

(Note that in PVCO, as defined in this document, the subscripts of the P, Q, and W vectors
range from 1 through 3 rather than from 0 through 2. Also, the subscripts of ¢ range from 1
through 4 rather than from 0 through 3.)

PVCO(K,r,v) =

rmag<«—\rer

h—rxv

hmag—\h-h
h

rmag
Ve—WxU

vhangle(hm?g v ¥V—10,

K K’
P« cos(v)+U—sin(v)+V
Q«sin(v)-U+cos(v)+V
i «—acos W3)

Q «— angle (— W2 , Wl)
(Q ,P3)

® <« angle \
s SCALI (K ,0,q,e,0)
c<—C<a-s2)

At—qes+K* ees’ e

q
e

i+ DegPerRad

Q-+ DegPerRad

 + DegPerRad
At

Gdc - 2024 UQ MP10.mcdx

hmag NN

U
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We now invoke PVCO and place its output into array CONIC.
CONIC:=PVCO (K,r;,v))

0.49327855 |
4.44695566
35.93334847
6.46163765
125.76261396

| —187.4733701 |

CONIC=

We should note that the position vector input to PVCO must have units of E.R. and the velocity
vector must have units of E.R. per minute. We summarize the weighted batch least squares
orbital solution as follows.

(CONIC1 — l) ca,=—3231.93882 Perigee height in km, relative to spherical
Earth figure.

CONIC2:4.44695566 Path eccentricity.

CONIC3:35.93335 Path inclination, in degrees.

CONIC =6.46164 Right ascension of ascending node, in
degrees.

CONICS: 125.76261 Argument of perigee, in degrees.

CONICG:—187.47337 Time of flight from perigee to epoch, in
minutes.

We have the height of perigee above a spherical Earth figure, but for a closest approach
determination, it would be more accurate to have the actual height of the object above its
subpoint on a oblate spheroidal Earth at the instant of perigee. We calculate this now.

1

= Earth's polar vs. equatorial flattening factor.
4 298.26 P a J
- Eccentricity of Earth's meridional
1 2
ei=N2-f=f reference ellipse.
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We define function GRT, which inputs space object's position vector and outputs the geodetic
latitude of the subsatellite point (subpoint), and the object's height above the subpoint.

GRT(r) = || rmag \/:

"
0 < asin
rmag

P9
forjel..4

l—e,

Ve ()
W)

l—e,

s

H,— \/rmag2 i (rs +sin <¢s_ ¢c>>2 — 7 COS <¢s_ ¢c>

H_ +sin (¢, —
$.+—6—asin| —— " Y Ol
rmag

&,

HS
At:=—CONIC M==FG(K,r1,V—[é,At)
f=M &=

vy
r::fr.rﬁgr.; LatHt:= GRT(r)

Geodetic latitude, ¢s, and height above spheroid, Hs, at time of perigee passage:
Lathl «DegPerRad =28.76523 (degrees)
LatHz‘2 ca,=—3227.04474 (km)

7. Repeat Steps 1-6, by clicking on "Calculate Worksheet", until convergence is obtained.
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